Abstract
Fedora includes a wide range of applications relevant to amateur radio operators. This guide describes the use of some of those applications.

1. Introduction ... 2
1. Introduction

Amateur radio and Linux go hand-in-hand. Both allow users to experiment to the extent of their knowledge and to learn more along the way. With new digital technologies being used everyday open source software is the best way to stay cutting edge in this ever-changing hobby.

Fedora has packaged dozens of software to make it easy for Fedora users to obtain and setup. Within seconds any user will be able to have the tools they to enhance their amateur radio experience.

2. Sound Card Modes

This section describes the sound card modes.

2.1. linpsk

yüm info as placeholder:
Description: LinPsk is a program for operating on digital modes running on Linux. LinPsk supports BPSK, QPSK and RTTY at the moment.

Main features are:
- The simultaneous decoding of up to four channels.
- The different digital modes may be mixed.
- You can define a trigger on each channel to be notified if a text of your choice is detected.
- You can log each received channel at a file.
- For easy qso'ing you can define macros and for larger texts to be send you can use two files.
- You can view the signal as spectrum or in a waterfall display.
- Both are scalable in the frequency domain.
- At the Moment RTTY only supports 45 baud and 1.5 stopbits.

2.2. lpsk31

yum info as placeholder

Description: lpsk31 is a ncurses console application for ham radio communications in the popular PSK31 digital mode. lpsk31 uses only integer arithmetic for both signal detection and audio tone synthesis, so that it needs no floating point calculations for its operation. lpsk31 can keep a log of QSO's in text and ADIF format as well as a raw log of all that is typed in the transmit window or displayed in the receive window.

2.3. fldigi

fldigi is one of the most robust soundcard modem software around. It supports CW, DominioEX, Feld-Hell, MFSK, MT-63 PSK, OLIVIA, RTTY, Thor, and Throb. fldigi also includes, as part of the software, a logger which is smart enough to almost complete itself.

Figure 1. fldigi
3. Rig Control
This section describes rig control applications.

3.1. Chirp
chirp is an application that allows programming of radios from a number of vendors. Chirp assumes that the appropriate cable is available and connected. Data may be saved to a .csv file for manipulation by other applications, as well as transferred between radios, even radios from different manufacturers.

chirp is started by clicking the chirp icon.

![Chirp icon](image)

Figure 2. Chirp icon

This will present a rather uninteresting blank screen.

In most cases, the user will wish to begin by selecting Download from Radio from the Radio menu. This will launch a dialog requesting some basic information such as the desired serial port, radio vendor and model. Note that the selected serial port must permit read/write access.

![Chirp Radio Dialog](image)

Figure 3. Chirp Radio Dialog

Clicking the OK button will begin reading the radio's memory.
What happens next depends on the radio. For radios that operate in “live” mode, the values will appear in the window, and values at the bottom of the window will show how many memories remain to be read and how many have been read. For radios with multiple bands, the first value will alternate between bands.

Figure 4. Chirp Main Screen

For radios that do not operate in “live” mode, a small window containing a progress bar will show the progress of the download. The data will appear after the data has been downloaded.

Figure 5. Chirp Main Screen
To change a value, simply click on the field and begin typing.

Figure 6. Changing a memory location

On some radios, data is changed in the radio as soon as it is changed onscreen. For others, it will be necessary to select the **Upload to Radio** from the **Radio** menu.

Figure 7. Chirp Main Screen

A progress bar will be displayed similar to that displayed during data download.

Figure 8. Chirp Main Screen

By default, only the first 25 memories are displayed. Near the top of the screen the **Memory range** controls allow for selecting those memories to be displayed. If a large number of memories are selected, it may take some time to display.

Figure 9. Selecting Memory Range to Display
Depending on the radio, there may be quite a few columns to display, so maximizing the window could be helpful.

![Figure 10. Large Display](image)

Individual columns may be removed from the display, making the display more manageable.

![Figure 11. Selecting Columns](image)
3.2. grig

grig is a simple front panel for a radio controlled by hamlib. Before using grig the user should first configure hamlib.

To start grig, click the grig icon:

![Figure 12. grig icon](image)

The main window allows for control over most of the actions accessible from a typical radio front panel. Frequency may be increased or decreased by left or right clicking the appropriate digit in the frequency display. Other controls are more or less self-explanatory.

![Figure 13. grig main window](image)

4. Logging and related applications

4.1. qle

qle stands for QSO Logger and Editor. It is a simple yet flexible logging program. qle uses a lightweight sqlite database that can be manipulated using standard tools. The application is easily customized, so you can have the logging program behave the way you want. It also interfaces with hamlib, so information may be automatically retrieved from your rig with the appropriate hardware.

4.1.1. Installing qle

qle can be installed with yum like any other package:

```
sudo yum install qle
```

However, qle requires some initial setup before it may be used.
4.1.2. Configuring qle

The install process creates a configuration file `/etc/qle/qle.conf` which must be edited. This can be done with your favorite text editor, however, the file is protected against writing by a non-admin user. The file might be edited with something like:

```bash
sudo gedit /etc/qle/qle.conf &
```

There are two lines that must be changed. At line 63 of the file, you will find the lines:

```
# debug = 0
# myCall = N0CAL
#
```

Be sure that the `debug` line is set to zero and change the `myCall` line to reflect your callsign.

The second line that must be changed is at line 75 where you will find:

```
# Filename of SQLite DB with full path.
# This file requires sufficient RW access for the DB to work...
# db = foo3.db
#
# Name of the table that you want to log into.
# Is probably case-sensitive:
# tableName = mycall
#
```

You must change the name of the database to your desired name and location.

`qle` is set up for a single user system, so all users share the same database. You must place the database in a location where it can be accessed by any users requiring it. If you always log on with the same usercode, you might choose to put it in a hidden subdirectory off your logon directory, for example, `~/.qle`. This is the simplest approach, but in some circumstances, you may prefer a more “global” location, for example, `/etc/qle`. In this case, you need to take care to give the file appropriate protections.

For simplicity, we will assume that `qle` will only ever be run from a single usercode and we will put the database there. Reflect that location and name in `qle.conf`, for example:

```bash
db = /home/usercode/.qle/qle.sqlite
```

Note that you cannot use the tilde (~) within the config file, you must enter the entire path.

There are many things you may wish to change. For example, at line 101:

```bash
# useRig = 1
#
```
determines whether you want to use the rig control library, *hamlib*, which can be a great convenience if you have the appropriate hardware.

At line 225:

```bash
noCwDaemon = 0
```

determines whether you wish *qle* to have the capability of keying the transmitter.

To avoid describing *hamlib* settings and hardware setup, we will assume these are both disabled for now, that is, `useRig=0` and `noCwDaemon=1`.

After editing *qle.conf*, you need to create the database. There is a sample database in `/usr/share/qle` so we can copy that to the location we have specified for our database:

```bash
cp /usr/share/qle/foo3.db ~/.qle/qle.sqlite
```

This file has some test data which we will delete after some initial testing.

4.1.3. Running *qle* for the first time

The first time you run *qle*, it should be done from the command line in debug mode to be sure you made no errors in the config file:

```bash
qle --debug=1
```

If there were errors editing the configuration file, they will appear in the window from which you started *qle*. If all went well, this should result in seeing the logging windows with the test data displayed:

![Logging windows with test data](image)

Figure 14. Running qle the first time
The qle "Main Window" shows the QSOs that have been logged so far. It will contain QSOs from the sample database. We will delete those QSOs later.

Figure 15. qle Main Window

The "Sub-Window" is actually where the data will be entered for each QSO. Some fields are provided automatically, such as the date and time. These will be a lighter color than the other fields. Each field has a button to the right indicating how that field is to be treated. Fields that have the label **CAR** will be carried over from QSO to QSO. These can be overwritten, but will initially be filled in with data from the previous QSO. These are things like Mode, Power, etc that tend not to change.
If you wish to change the data in a field that has the label LCK, you may simply click on LCK and select another choice from the dropdown. Normally, you might choose --, but if you are contesting, the NR SENT field includes a +1 choice.

Figure 16. qle Data Entry Window

Figure 17. Changing Field Attributes
If you double-click an existing QSO in the Main Window, an Editing Window will appear, allowing you to make changes to the existing QSO.

Figure 18. Editing an existing QSO

To exit the program, click the **Exit Program** button at the lower left of the subwindow.

Figure 19. Exit Program Button

qle will ask for confirmation when exiting.

4.1.4. Deleting Sample Data

Now that you are familiar with the basic operation of *qle*, you will want to delete the original sample data so the database only contains your QSOs. Since the data is in a *sqlite* database, we merely need to use some simple commands to do that:

```
[jjmcdaidan .qle]$ sqlite3 ~/.qle/qle.sqlite
SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> DELETE FROM mycall;
```
If you are familiar with SQL, you can also use sqlitedb to make other changes and queries.

You are now ready to begin using qle. Click on the qle icon, typically found in the "Internet" group.

Figure 20. qle icon
4.1.5. Duplicate Checking

qle provides duplicate checking as the call is entered. When the first character is entered, any calls in the log that match are shown in the duplicate window:

Figure 21. Dupe Sheet - first character

As additional characters are entered, the list gets shorter:

Figure 22. Dupe Sheet - second character

Figure 23. Dupe Sheet - third character
In addition to the current log, the file `/usr/share/qle/master.scp` contains a list of calls to check. These are shown in a separate SCP window:

![SCP Window](image)

Figure 24. SCP Window

Like the dupes window, this list gets shorter as you type. Edit `master.scp` to include the calls you want.

4.1.6. Some customizations you probably want

`qle` is highly customizable. In the previous sections, we described a few things that definitely need to be changed. There are quite a few more you probably want to change.

At the bottom of the secondary screen you will notice a bar with some information:

![Subwindow Info Bar](image)

Figure 25. Subwindow Info Bar

This bar is simply a reminder for some random data you may want to keep handy. You can change the information by editing the lines starting at line 1051 in the configuration file:

```plaintext
infoString = "ARCI: 10114"
infoString = "LOC: EN73vp"
infoString = "ITU: 8 "
infoString = "CQZ: 4 "
```

You may find that you want the default field types to be different. For example, suppose you constantly change power and you don't want the previous power to be shown by default. At line 384 of the configuration file is a line for each field with the default type. You can simply change this to make `qle` start with the type you desire:

```plaintext
fieldTypes = "---"  # mypwr
```
You can even adjust individual colors to make them as appealing (or as horrible) as you prefer:

![Figure 26. Colors only a mother could love](image)

There are literally hundreds of adjustments you can make to tailor your logger to behave exactly the way you want. Just be sure to carefully review the comments in `qle.conf` so you don't get unexpected results.

4.2. xlog

`xlog` is a wonderful logging program that allows the user to create multiple logs, import and export in various formats, and maintain a count on the various awards such as WAS, WAC, DXCC, WAZ, and IOTA. Future versions will contain code to hook into the ARRL's LoTW.

4.2.1. Installing xlog

`xlog` is simply installed like most applications:

```bash
sudo yum install xlog
```

4.2.2. Starting xlog

`xlog` may be started from the menu by selecting `Applications->Other->xlog` or from the command line by typing `xlog`.

4.2.3. Setting up xlog

`xlog` is extremely easy to get setup. After starting xlog, select `Settings->Preferences`. This will bring up a preferences box where you can configure most options for `xlog`.

17
The **General** tab contains basic information on how the log will be setup including the modes and bands you operate. You can change these at anytime but it is good to go ahead and add or remove the modes and bands you don't operate to simplify the operation of the logging later. You can also enable the clock on the status bar and recording of azimuth and distance when you enter in the location of the station. You can also control out data from external programs, such as gmfsk and ktrack, are handled.

The **Info** tab contains information on your station and preference to miles or kilometers and where you want the software to look up a callsign. It is recommended that you enter your callsign and your coordinates into the fields located on this tab so the log can appropriately annotate your callsign where necessary and can provide azimuth and distance to a station upon entry of the state or grid. If you don't know your latitude and longitude you can just enter your grid locator and the software will populate a rough location for your station.

The **Hamilib** tab allows you to setup xlog to read your radio so your log will automatically record the frequency and mode. xlog will also display the S-meter on the status bar for your convinence.

The **Logs** tab allow you to setup the logs themselves. This includes where to store the logs, which logs to start automatically upon starting xlog, when to save the log, and the font. By default, xlog stores your logs in ~/.xlog. This can be changed by providing the appropriate path. If you have multiple logs you can type in the names of each log separated by a comma in the next field and xlog will load those logs each time using tabs at the top of the main screen. The next field asks if you want xlog to save the log whenever you write a log entry or every x minutes. You can also establish a backup of your logs in a separate directory which you can provide in the backup entry. The last field is used to select the font you would like to use for your logs.

5. Antenna and Propagation Modeling

5.1. splat

splat is a Surface Path Length And Terrain analysis application which can perform path loss calculations as well as generate coverage maps. Primarily intended for VHF/UHF, it can help plan repeater coverage or plan emergency communications strategies.

5.1.1. Installation and setup

Installing splat is straightforward:

```
su -c 'yum install splat'
```

5.1.1.1. Obtaining Terrain Files

Before it can be useful, splat requires files that describe the terrain around the station to be modelled. First, determine the latitude and longitude of the station. Then download the nine terrain files centered on that latitude and longitude from http://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3/.

Unzip the nine files and convert them from hgt files to sdf with the srtm2sdf utility. For example:

```
srtm2sdf N41W082.hgt
```
Do this for each of the nine files. Those files can now be placed in a directory where you wish to store terrain files, or they can be placed in the directory where you wish to work with splat.

If you will be modelling stations over a wide geographic area, you may wish to download and convert additional files. splat will select those files it requires for a particular calculation.

5.1.1.2. Obtaining cartographic boundary files
splat will work with just the terrain files. However, for path loss maps, the resulting maps can be more useful if they are marked with political boundaries and names of towns and cities. For the United States, county outlines can be downloaded from http://www.census.gov/geo/www/cob/co2000.html#ascii and ‘census designated areas’ from http://www.census.gov/geo/www/cob/pl2000.html#ascii.

For each of these, there are two files, an *xxxyy_d00.dat* and *xxxyy_d00a.dat*, where *xx* is ‘co’ for county and ‘pl’ for place, and *yy* is a state number. A file of place names can be generated from the ‘a’ file with the citydecoder utility. For example:

```
citydecoder pl37 > cities.dat
```

The *cities.dat* file is simply a list of names followed by latitude and longitude. You may edit the file with a text editor to insert additional places which will be marked on the map with a red dot.

5.1.2. Using SPLAT!
splat can perform calculations for a particular path, or generate a map showing path loss or signal strength over a region. In any case splat needs at least one file identifying the transmitter location. For a specific path, it needs an identical file for the receiver. If you would like signal strength calculations, you will need another file with more details about the transmitter.

5.1.2.1. The QTH file
You tell splat about a particular station (transmitter or receiver) with a qth file. This file has four lines:

1. The name of the station
2. The latitude of the station
3. The longitude of the station
4. The antenna height above ground

Here is an example qth file:

```
W8KEA-4
43 38 05
84 15 41
124.0
```

The qth file should be named for the station. The name of the file in the above example would be *W8KEA-4.qth*.

By default, splat uses British units; heights are in feet, distances are in miles. However, invoking splat with the -metric switch will cause it to use metric units.
5.1.2.2. The LRP file

If you would like splat to calculate signal strengths, it needs to know a little more about the transmitter. You provide this information in a file whose name matches that of the qth file but has an extension of lrp.

The lrp file has 9 lines:
1. Earth Dielectric Constant. If you do not have measured data available, the splat man page has a table that can help you estimate a value.
2. Earth Conductivity
3. Atmospheric Bending Constant
4. Frequency
5. Radio Climate. This is a code describing the terrain. See the table in the man page
6. Polarization
7. Fraction of situations. This and the following line reflect how the Longley-Rice calculations are to be carried out. In the example below, splat will calculate the maximum path loss experienced 50% of the time in 50% of the situations.
8. Fraction of time
9. Effective radiated power - power out less feedline loss times antenna gain

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.000</td>
<td>Earth Dielectric Constant (Relative permittivity)</td>
</tr>
<tr>
<td>0.005</td>
<td>Earth Conductivity (Siemens per meter)</td>
</tr>
<tr>
<td>301.000</td>
<td>Atmospheric Bending Constant (N-Units)</td>
</tr>
<tr>
<td>145.090</td>
<td>Frequency in MHz (20 MHz to 20 GHz)</td>
</tr>
<tr>
<td>5</td>
<td>Radio Climate</td>
</tr>
<tr>
<td>1</td>
<td>Polarization (0 = Horizontal, 1 = Vertical)</td>
</tr>
<tr>
<td>0.50</td>
<td>Fraction of situations</td>
</tr>
<tr>
<td>0.50</td>
<td>Fraction of time</td>
</tr>
<tr>
<td>126.00</td>
<td>ERP</td>
</tr>
</tbody>
</table>

You may leave out the last line in which case splat will calculate only path loss.

5.1.2.3. Making a map of coverage

.
Figure 27. Coverage map with constrained distance
5.1.2.4. Calculating a point-to-point path

5.2. xnc2c

xnc2c is a GUI wrapper on the popular NEC2 antenna modeling program. The application allows the design of an arbitrary antenna, and displays gain, impedance and other useful results.
Figure 30. xnec2c - yagi
x nec2c displays its output in up to three windows. The first window shows the model the user has provided:

![Figure 31. Structure display of a collinear](image)

The user may rotate the view with the two numeric controls. The X, Y and Z buttons permit views along the three axes, and the curved arrow button returns to the default isometric view.
Selecting **Radiation Pattern** from the **View** menu opens the radiation pattern window (*Figure 32, "Radiation Pattern Display"). The view may be rotated in the same manner as the structure window. Buttons at the top allow for selection of the radiation pattern or the field pattern display.

Figure 32. Radiation Pattern Display

The **dB / MHz** controls allow for specifying the precise frequency at which the gain is to be displayed.
Selecting **Frequency Plots** from the **View** menu opens the frequency data plots window (**Figure 33, “Frequency Data Plots Display”**). Buttons along the top permit display of SWR, impedance, phase, etc.

![Figure 33. Frequency Data Plots Display](image)

Clicking on the graph causes the gain, SWR and impedance to be displayed immediately above the graphs for the selected frequency.

More complete documentation is installed with the application and may be found at file:///usr/share/doc/xnec2c-1.5/xnec2c.html after the application has been installed.

5.2.1. Improving calculation performance

When a complex antenna with many segments and many frequency steps is required, the calculation can take some time. **xnec2c** is able to take advantage of modern, multicore processors by specifying `-j <n>`, where `<n>` is the number of subprocesses to spawn. Many multicore processors can create two threads per core, so a command line entry of

```
xnec2c -j 8 &
```

can improve performance by almost a factor of eight on a quad core processor.

6. Packet and APRS
6.1. colrdx

Colrdx is a simple client for amateur radio dx-clusters. In a split-screen display you can type commands for the cluster in the bottom part. Messages from the dx-cluster will appear in the main window. There is also a status line at the top with some basic information.

To start colrdx, open a terminal window and type the command. You must provide your callsign and the name of the packet cluster. Optionally, you may also wish to provide the port:

```
colrdx -c <call> <nodename> [<port>]
```

You will see some introductory information from the cluster and spots will begin to appear. You may type commands to the cluster (dependent on the particular cluster). To exit type `quit`.

There is a manpage with additional details.

6.2. xconvers

xconvers is a client for packet based CONVerse bridges. When selected, xconvers will present a blank screen. Choosing Open... from the Host will open a dialog allowing the user to enter the name and port of the host.
Once connected, the user will see conversation on the channel. User input is seen in the lower part of the window and entered into the CONVerse bridge when Return is pressed.

Input from different users is seen in different colors. The colors and fonts may be adjusted by selecting Preferences... from the Settings menu.

6.3. xastir

xastir is an APRS application that allows users to send and receive position reports, messages, weather data, and other information over packet radio. Data received is displayed on a map allowing the user to get real-time information about a certain area. The user may also fetch trails from findu.com and display them on the map when connected to the Internet.
Figure 37. xastir

The map may be selected from a large number of sources. Facilities are also provided for drawing fixed items on the map as well as making measurements. The user may make specific queries to weather stations and Igates.

6.3.1. Initial Setup

Select Station from the Configure submenu of the File menu. This will bring up a dialog allowing the user to enter basic station information such as call, location, and symbol to be used.
Selecting **Defaults** from the **Configure** submenu of the **File** menu will elicit a dialog allowing configuration of some common default information, such as whether the station is mobile or fixed and whether to allow IGate traffic.

Select **Interface Control** from the **Interface** menu. Click **Add** and select an interface type. then click **Add**. A dialog specific to the interface type will appear. The image below shows a KISS TNC as an example, but the operator may select Internet servers, GPS devices and other interfaces as well.
Once interfaces are configured, some small symbols will appear in the status bar toward the lower right of the window. The upper semi-circles represent the various interfaces; different types are shown as different colors. The bottom symbol represents the interface status; green for active, empty for inactive, and red for an error. Between these two symbols an arrow will appear briefly whenever data is being transferred.

![Figure 41. Interface Status](image)

6.3.2. Setting up maps

xastir comes configured for a number of online map sources, and the documentation includes pointers to many online map sources. Maps may be vector maps or raster maps, and they may be provided in a number of different formats. In general, maps downloaded and stored locally will be retrieved faster than those retrieved online.

Although raster maps often look better, vector maps typically offer better flexibility and performance. You may select a number of maps and raster maps may be overlaid on other maps. You could, for example, select a satellite image background, overlay it with a vector map of roads, and overlay that with weather radar.

Select **Map Chooser** from the **Map** menu. Highlight those maps desired and click **Apply** to activate the maps.
Click **Properties** on the Map Chooser to activate the Map Properties dialog. This dialog allows you to select the order in which maps will be layered, and whether areas will be filled (when appropriate).

Often one would like to return to a particular view. Select **Map Display Bookmarks** from the Map menu to bring up the Map Bookmark display. The user may then type a name for the current view in the **New Name** box and click **Add** on that dialog to save that view. In the future, clicking **Activate!** from this same dialog will return to the selected view.
The user may select a background color from the **Background Color** submenu of the **Configure** submenu of the **Map** menu. Note that raster maps or filled areas will cover the background color.

Notice that if a light color is selected as a background on a vector map, the stations can sometimes be difficult to see.
But selecting a background too dark makes the map features difficult to identify, while allowing the stations to stand out. A medium color selection will allow the best of both, although certain uses will lend themselves to an emphasis on one or the other.

Select a text style from the **Station Text Style** submenu of the **Configure** submenu of the **Map** menu. By selecting Text On Black stations will stand out better when a light background has been selected.
6.3.3. Tracking Stations
Select Track Station from the Station menu. A dialog will appear allowing the call of a station to be entered. When this station is seen to move, a track will be drawn on the map showing the station’s past positions.

![Figure 48. Tracking a station](image)

If a station which is moving has not been heard from in a while, xastir will use “dead reckoning” to predict where it might be, if dead reckoning has been enabled. Dead reckoning is enabled in the Filter Display submenu of the Station menu. “A while” is configured in the Timing menu item of the Configure submenu of the File menu.

![Figure 49. Dead Reckoning](image)

Historical tracks may also be downloaded from the findu website. Select Fetch Findu Trail from the Station menu.
A dialog will appear which allows for the entry of the desired call, as well as two sliders which allow for adjustment of the period for which the trail is desired. It may take some time to download a long trail. The trail will be displayed on the map just as with RF trails.

7. Circuit Design and Simulation

7.1. gEDA
gEDA is a collection of packages for schematic capture, netlist generation, circuit simulation and PCB layout. Included in the geda suite are:
- **geda-docs** - Documentation and example files
- **geda-gattrib** - gEDA attribute editor
- **geda-gnetlist** - Generates a netlist from a gEDA schematic
- **geda-symbols** - A library of symbols for gEDA
- **geda-gschem** - The gEDA schematic capture application
- **geda-gsymcheck** - A symbol checker for schematics

In addition to the **geda-utils** utilities package, **geda-gaf** design automation package, and **libgeda** the gEDA library.

Closely tied into gEDA and mentioned elsewhere in this guide are:
- **pcb** - The printed circuit board layout application
- **gerbv** - Gerber viewer
- **gwave** - The waveform viewer
- **ngspice** - The circuit simulator
- **gspiceui** - A GUI interface for ngspice
Users wishing to take full advantage of gEDA should consider installing the *Electronic Lab* group which includes all the above components as well as the *electronics-menu* package and a number of other useful applications.

7.2. gerbv

gerbv is a viewer for Gerber files.

In addition to selectively viewing and coloring Gerber layers, *gerbv* allows the user to export the image in a number of image formats for publication, as well as RS-274X compliant Gerbers and Excellon drill files.
In addition to purely manual layout, *pcb* can import netlists from gschem. A large number of footprints are available or the user may develop his own.

The application can generate a bill of material and drill file, and in addition to printing various layers can export in a number of popular formats.
7.4. gspiceui

gspiceui is a frontend to a SPICE simulation. The user may choose between the gnucap or ng-spice backends.

![GSPICEUI](image)

Figure 54. gspiceui

gspiceui can open a netlist produced by **gnetlist** and run the SPICE simulation without having to know the various SPICE commands.

8. Miscellaneous Applications

8.1. CuteCW

CuteCW is a Morse code training program that not only trains the user in decyphering morse code but also provides methods for increasing their comprehension speed. CuteCW will also sound Morse code out of the computer speakers and will read text out as Morse code.

8.1.1. Installing CuteCW

CuteCW is simply installed like most applications:

```
sudo yum install cutecw
```

8.1.2. Starting CuteCW

CuteCW may be started from the menu by selecting **Applications->Education->CuteCW** or from the command line by typing **cutecw**.

8.1.3. Using CuteCW

CuteCW is quite easy to use. Eight choices are given to help with your learning experience.
In the training mode, CuteCW will help with your recognition of characters, words, and groups. It will also help you increase your speed. In the play mode, CuteCW will read text to you in Morse code, allow you to type out Morse code messages, and even play games.

8.2. dxcc

dxcc is a simple application to give quick information about a DXCC entity. Simply enter the callsign and see the country, WAZ and ITU zones, and other useful information.
Figure 56. dxcc
8.3. gpredict

gpredict is an application to show the locations of various satellites. Satellite locations and ground footprints are shown on a map, a polar display showing the user's sky view of the spacecraft is available, and another window shows various details of the orbit. The displays are updated in real time.

Figure 57. gpredict
Before using \texttt{gpredict}, the user should select \textbf{Preferences} from the \textbf{Edit} menu and set up station location and display name. (Refer to \textit{Figure 58, “Select Ground Station”}.)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figures/figure58.png}
\caption{Select Ground Station}
\end{figure}

First, select the \textbf{Ground Stations} tab and click \textbf{Add New}.

A dialog will pop up (\textit{Figure 59, “Ground Station Settings”}) which will permit entering the station details. Note that by clicking the \textbf{Select} button, the location may be chosen from a list.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figures/figure59.png}
\caption{Ground Station Settings}
\end{figure}

When complete, be sure to check that the desired station is selected as the \textbf{Default} so it will be displayed on the map (the right column in \textit{Figure 58, “Select Ground Station”}).
Next, the user should update orbital parameters by selecting **Update TLE** from the **Edit** menu. Downloading these values may take a few moments.

By default, a few amateur satellites are shown. The lower portion of the display will show details for the spacecraft currently in view. Orbital parameters for another satellite may be selected from the dropdown to the left of the satellite name.

There are a number of other displays available, and additional groups of satellites may be configured which may be shown in tabs (**File** -> **New module**). Clicking on the small downward triangle to the right of the window (**Figure 60, “Module Menu”**) brings up a menu which permits editing an existing module.

![Figure 60. Module Menu](image)

Also available from that module menu is a **Sky at a glance** selection which brings up **Figure 61, “Sky at a glance”**, showing which spacecraft in the module will come into view within the next eight hours.

![Figure 61. Sky at a glance](image)

In the map view, hovering over a spacecraft will display the current position information:

![Figure 62. Position Display](image)

8.4. gresistor

gresistor is a simple application for decoding resistor color codes. Select the number of bands on the resistor and each of the colors of the bands, and the resistor value and tolerance are displayed.
8.5. ibp

ibp is a simple application that shows beacons which are part of the International Beacon Project. A number of beacons around the world transmit at predetermined times. The *ibp* application shows you which beacons are currently transmitting.

8.5.1. Installing ibp

ibp is simply installed like most applications:

```
sudo yum install ibp
```

No additional configuration is required, however, *ibp* expects that the time on the system is correct. Synchronizing your system with one of the many timeservers is recommended.

8.5.2. Starting ibp

ibp may be started from the menu by selecting Applications->Other->ibp or from the command line by typing `ibp`.

![Figure 63. gresistor](image)
When *ibp* is started, by default, two windows will open. The first is a simple text screen showing a list of beacons with the currently transmitting beacons highlighted:

Figure 64. *ibp* - text screen

The second window shows a map of the world with a colored dot for each transmitting beacon:

Figure 65. *ibp* - map
There are a number of arguments you may specify to affect how ibp behaves when it is started from the command line:

- `-c, --nocolor` - causes the text window to be displayed only in monochrome. The graph window is still in color.

- `-m, --morse` - In single beacon mode, causes the callsign of the transmitting beacon to be displayed at the bottom of the text window in Morse.

- `-x, --nograph` - Don't display the map window.

8.5.3. Running ibp

While `ibp` is running, the highlighted lines on the text display and the dots on the map will periodically change as different beacons take on the transmitting task.

There are several commands you can enter into the text screen to affect the behavior of `ibp`:

- **digits 1 through 5** - causes only one band to be displayed. Since one is normally only monitoring a single band at a time this can lead to faster identification of the beacon of interest. This is also useful for visually challenged operators.

- **M** - toggles between single band and multi band mode. If a single band was displayed, typing `M` will cause all five bands to be displayed. If five bands were displayed, the previously selected single band will be displayed.

- **Q** - causes `ibp` to exit.

8.6. rcrpanel

`rcrpanel` is a command line application which allows layout of panels for electronic equipment. `rcrpanel` accepts as input a text file describing the panel. It produces as output a Postscript stream of an image of the panel. The Postscript stream may be redirected to a file, a Postscript printer, or piped to another application such as Ghostscript.

By taking a text description of the panel, `rcrpanel` allows precise placement of controls and annotation, which can be difficult to achieve with a GUI interface. `rcrpanel` provides scripting elements for text, controls of various sizes, and even calibrated dials.

![Figure 66. Example Panel](image)

8.6.1. Running rcrpanel

`rcrpanel` accepts a single command line parameter, the input file containing the description of the panel. It produces its output on `stdout`, which means that in most cases, the user will redirect the output to a file. For example:

```
rcrpanel mypanel.txt >mypanel.ps
```
There are no command line switches available.

The output image will be centered on a standard size page. The smallest page on which the panel will fit is selected from the following list, in order:
216x179 mm - U.S. Letter
210x297 mm - A4
216x279 mm - U.S. Legal
297x420 mm - A3
279x432 mm - Tabloid
594x841 mm - A1
559x894 mm - D
841x1189 mm - A0
1000X1414 mm - B0

8.6.2. The Input File
The input file contains lines describing the various controls. Most lines are of the form

Command = something

where the spaces around the equal sign are significant, and the command itself is case-sensitive.

Measurements are in units of millimeters. Angles are in degrees. Colors are given as 24 bit C style integers where each byte represents the amount of red, green, or blue.

In general, the order of commands makes no difference. However, the Text command must be immediately followed by a line containing the text to be displayed, and those commands affecting the appearance of a Dial affect the preceding Dial command.

8.6.2.1. Background
This command takes a single color following the equal sign. The entire panel will be filled with this color.

Background = 0xfff5e8

Note, however, that the interior of controls will not be filled with this color, allowing the alignment marks to be viewed for drilling, even if the panel were filled with a dark color.

8.6.2.2. ControlLarge
This is used for large diameter controls such as large pots and the like. It takes 2 values after the equal sign representing the position of the control on the panel.
8.6.2.3. ControlLED
This command generates an outline for a 5 mm LED. Like the other control commands, it takes 2 values, the X and Y positions on the panel of the center of the LED.

8.6.2.4. ControlPhone
This is used for 1/4" phone jacks and similar controls. The 2 values after the equal sign represent the position on the panel.

8.6.2.5. ControlSmall
This command generates an outline for a 3.5 mm phone jack. The two values are the X and Y positions of the jack on the panel.

8.6.2.6. ControlTiny
This command generates an outline for a 2.5 mm phone jack. The two values are the X and Y positions of the jack on the panel.

8.6.2.7. Panel
This command defines the size of the panel. The 2 dimensions are the width and height of the panel.

8.6.2.8. Reverse
This command takes no arguments. If this command appears anywhere in the input file, the resulting PostScript will be flipped left to right (for printing on the reverse side of transfer media or transparency material).

8.6.2.9. Text
This command is somewhat different from the others. After the equal sign, it takes 3 floating point numbers, a color, and a text string. The first 2 floating point numbers are the X, Y position of the text on the panel. The third number is the height of the text. The color represents the color of the text, and the text string represents the font to be used. No checking is done before preparing the PostScript; you are responsible for ensuring that the font is available on your printer.
This command is then followed by another line containing the text to be displayed.

```
Text = 100.0 10.0 5.0 0x7f4f00 Times-Roman-Bold
Filter
```

8.6.2.10. Dial
This command introduces a new dial. The **Dial** command describes the X,Y center of the dial. The following commands then further refine the details of this particular dial. This relationship between the **Dial** command and its successors is the only place where the order of the commands within the file matters.

```
Dial = 170.0 30.0
```

8.6.2.11. Radius
This command takes a single value which is the radius of the circle which forms the inside of the tick marks. This command refers to the current **Dial** command.

```
Radius = 7.0
```

8.6.2.12. Span
This command describes the angle over which the control may operate. Typically, this would be 270 for a potentiometer and 180 for a variable capacitor. This command refers to the current **Dial** command.

8.6.2.13. NumTicks
This command describes the total number of tick marks, large and small, to be drawn. This is usually an odd number since the starting and ending values are counted. Typically this will be 11, 101, or a similar number. This command refers to the current **Dial** command.

```
NumTicks = 101
```

8.6.2.14. BigPer
This command tells the program how many small tick marks there are per large tick mark. This command refers to the current **Dial** command.

```
BigPer = 10
```

8.6.2.15. SizeTicks
This command describes the length of the small tick marks. This command refers to the current **Dial** command.

```
SizeTicks = 6.5
```

50
8.6.2.16. SizeBig
This command describes the length of the large tick marks. This command refers to the current Dial command.

\[
\text{SizeBig} = 7.5
\]

8.6.2.17. StartingIndicator
This command describes the value to be placed on the furthest counterclockwise large tick mark. This command refers to the current Dial command.

8.6.2.18. IncrementPerBigTick
This command tells rcrpanel how much to increment the value in StartingIndicator for each succeeding large tick mark. This command refers to the current Dial command.

8.6.2.19. SizeFont
This command describes how large to make the annotation on the ticks. This command refers to the current Dial command.

8.6.2.20. ColorCircle
This command takes a single color as an argument, which is used to draw the inner circle. This command refers to the current Dial command.

8.6.2.21. ColorTickMarks
This command permits setting the color to draw the small tick marks. This command refers to the current Dial command.

8.6.2.22. ColorBigTickMarks
This command permits setting the color to draw the large tick marks. This command refers to the current Dial command.

8.6.2.23. ColorText
This command accepts a single color which will be used for the annotation. This command refers to the current Dial command.

8.6.2.24. StartAngle
By default, rcrpanel arranges dials so the dead spot on the control is straight down. This is the desired behavior in almost all cases. However, sometimes you may want to rotate a control to some other orientation. The single argument to StartAngle is the number of degrees clockwise to rotate the control. This command refers to the current Dial command.

8.6.3. Example Dials

8.6.3.1. Frequency Markings for a VCO
8.6.3.2. Markings for a volume control
8.6.3.3. Markings for a VFO (capacitor based)

ControlLarge = 25.0 25.0
Dial = 25.0 25.0
Radius = 7.0
SizeTicks = 3.5
ColorTickMarks = 0x777777
SizeBig = 5.5
ColorBigTickMarks = 0xffffff
StartingIndicator = 3.5
IncrementPerBigTick = 0.01
NumTicks = 41
BigPer = 4
ColorCircle = 0x777777
SizeFont = 2.0
ColorText = 0xffffff
Span = 180.0
Text = 25.0 15.0 2.0 0xff0000 Century-Schoolbook
Frequency

8.7. xgridloc

xgridloc is an application which will translate a latitude/longitude into a Maidenhead grid square. It will also calculate the Great Circle distance and bearing between two locations.
8.7.1. Installing xgridloc

`xgridloc` is installed like most applications in Fedora:

```
sudo yum install xgridloc
```

8.7.2. Setting up xgridloc

`xgridloc` uses a small configuration file, `~/.xgridlocrc`. Before using `xgridloc` you should replace the default location in the file with your station location using your favorite text editor:

```
######### Runtime config file for 'xgridloc' #########
#
### Blank lines and those starting with a # are ignored ###
#
# The 'Home' location's position.
# (East Longitude and North Latitude)
# Format is "East/ddd:mm:ss North/dd:mm:ss"
West/084:11:59 North/43:38:06
#
# The name of the 'Home' location
Midland
#
```

8.7.3. Using xgridloc

`xgridloc` may be started by selecting item `xgridloc` icon (usually found in the `Internet` group) or by issuing the `xgridloc` command from the command line.

Clicking the `Default Home Position` button will cause the top location to be filled in with the location you specified in the configuration file.
If you enter a latitude and longitude in either the "Home" or "Remote" location and press **Enter**, the corresponding **Locator** box will be filled in with the Maidenhead grid square for that location.

![Xgridloc](image)

Figure 72. xgridloc

If both locations are filled, the Great Circle bearing and distance will appear at the bottom of the window.

8.8. xwota

xwota allows for monitoring and querying the WOTA database. It operates much like a DX Cluster client, except it uses the database rather than a cluster. Refer to http://www.wotadb.org for information about the WOTA database.

Selecting **Connect** from the **Xwota** menu will connect to the database. New reports will appear on the screen as they arrive.
The user may also query the database by selecting Query from the Show menu. A dialog will appear allowing the user to enter specific location, frequency, and/or call to be searched for. Clicking Send will then cause the results to be returned at the bottom of the main window.

The user may also enter his own report. Before doing this, station information should be entered by selecting Station Info from the Settings menu and filling in the dialog:
Figure 75. Station Info window

The user may then enter the frequency and optionally a comment in the main window, and click the Update button to cause the report to be sent to the database.

A. Installing Software on Fedora

There are basically two ways to install software from the Fedora repositories; from the GUI using PackageKit and from the command line using yum. Because the yum approach is simpler, throughout this document we describe that method. However, there are a number of details with respect to yum that are useful to know, and some users feel more comfortable with a graphical user interface. Hence, this appendix.

A.1. Installing Software with the GUI

Launch the PackageKit application by selecting the Add/Remove Software icon from the System Tools group.

Figure A.1. Add/Remove Software

There may be a delay before the controls on the window that appears may be used. This delay may be brief or lengthy, depending on what you have done earlier. The data used by PackageKit is cached, and if it is stale, new data will be downloaded, which may take several minutes.

Type in the name of the package you wish to install in the text box at the upper left, and select the Find button. There may be a delay, and you may need to click the Find button a second time.

The package (perhaps with several others) will appear to the right. The closed box indicates that the package is not installed on your system.
Click on the check box next to the package you wish to install. A blue plus sign will appear over the box indicating that is has been selected to install.

You may repeat the process if you wish to install additional packages. When you have selected the packages you wish, click the **Apply** button at the lower right to install the packages.

Depending on how your system has been configured, you may be prompted to enter the password for the administrative user. If the package is unsigned, or is from a repository you have not used before, you may be prompted for this password again. As a general rule, only administrators may install software.
Enter the root password and click **Authenticate**.

The package will then be installed. When the installation is complete, the package will be shown as an open box, indicating that the package is installed. For some applications, the application's icon may be displayed instead of the open box. The **Apply** button will be disabled, indicating that there are no pending actions to apply.

The **Find** button searches not only the name of the package, but also the package description. Some common words may reveal several packages, some perhaps not those intended. For example, if you typed in "circuit" with the intent of finding circuit design applications, you may also find applications referring to wired communications circuits as well as racing circuits!
Figure A.6. Searching the description

Sometimes you may want to try several variations of a word or phrase. If, for example, you are looking for an SSTV application, trying "slowscan" or "slow scan" will fail:

Figure A.7. Searching the description - failure

The developer of the slow scan application used the word "slow-scan" in his description. PackageKit is not smart enough to guess what you meant or what the original developer was thinking.

Figure A.8. Searching the description - success

A.2. Installing Software with yum

Unlike PackageKit, where the system administrator may choose to allow non-administrative users to install software, yum requires administrator authentication. There are three ways this can be done:

- You may switch to the root user with the `su` command:

  ```bash
  [jjmcd@Cimbaoth ~]$ su -
  Password:
  [root@Cimbaoth ~]$ yum install xastir
  Loaded plugins: presto, refresh-packagekit
  ...
  ``

  This is the least desirable method. You must enter the root password, and you can easily forget that you are operating as root. As the root user you can do unlimited damage.
• You may use the `su` command with the `-c` switch. This allows you to enter the single `yum` command as root, but immediately switches back to your normal user:

```
[jjmcd@Cimbaoth ~]$ su - 'yum install fldigi'
Password:
Loaded plugins: presto, refresh-packagekit
...
```

Notice that you must surround the command with quotation marks or apostrophes. This still requires you to type the password, and is somewhat more annoying to type, but does not leave you as root ready to do damage.

• If the administrator has set you up in the `sudoers` file, you may use the `sudo` command:

```
[jjmcd@Cimbaoth ~]$ sudo yum install wxapt
Loaded plugins: presto, refresh-packagekit
...
```

This has several advantages; you don't need to type the password, you are not left in a dangerous position, and if desired, the administrator can limit you to a select set of commands so you do not inadvertently cause damage.

Because this is the preferred approach, the examples in this guide use this method. However, it does require setup ahead of time.

`yum` may determine that additional packages must be installed. `yum` will list these packages and calculate the total size of the download. It will then ask you whether you want to actually download and install this package or group of packages:

```
[jjmcd@Cimbaoth ~]$ sudo yum install trustedqsl
Loaded plugins: presto, refresh-packagekit
Setting up and reading Presto delta metadata
Setting up Install Process
Resolving Dependencies
---> Running transaction check
---> Package trustedqsl.i386 0:1.11-3.fc10 set to be updated
---> Processing Dependency: tqsllib >= 1.2 for package: trustedqsl-1.11-3.fc10.i386
---> Processing Dependency: libtqsllib.so.1 for package: trustedqsl-1.11-3.fc10.i386
---> Running transaction check
---> Package tqsllib.i386 0:2.0-5.fc10 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
trustedqsl i386 1.11-3.fc10 updates 557 k
Installing for dependencies:
tqsllib i386 2.0-5.fc10 updates 167 k

Transaction Summary
==
Install 2 Package(s)
Update 0 Package(s)
Remove 0 Package(s)
```


A.2.1. Searching for Software

`yum` gives you a number of choices for locating software you desire. To find information about a package you do not need to provide credentials. Any user may look up information about a package. You may search for specific words in the description using `yum search`:

```
[jjmcd@Cimbaoth ~]$ yum search APRS
Loaded plugins: presto, refresh-packagekit
Setting up and reading Presto delta metadata
================================ Matched: APRS =================================
aprsd.i386 : Internet gateway and client access to amateur radio APRS packet
 : data
xastir.i386 : Amateur Station Tracking and Reporting system for amateur radio

[jjmcd@Cimbaoth ~]$ yum info xastir
Loaded plugins: presto, refresh-packagekit
Setting up and reading Presto delta metadata
Installed Packages
Name : xastir
Arch : i386
Version : 1.9.4
Release : 5.fc10
Size : 4.0 M
Repo : installed
Summary : Amateur Station Tracking and Reporting system for amateur radio
URL : http://www.xastir.org
License : GPLv2+
Description: Xastir is a graphical application that interfaces HAM radio
 : and internet access to realtime mapping software.
 : Install XASTIR if you are interested in APRS(tm) and HAM radio
 : software.

[jjmcd@Cimbaoth ~]$ yum
```

`yum` will return the names of any package with the specified phrase in its description, and a short description. You may get a more detailed description of the package with the `yum info` command:

```
[jjmcd@Cimbaoth ~]$ yum info xastir
Loaded plugins: presto, refresh-packagekit
Setting up and reading Presto delta metadata
Installed Packages
Name : xastir
Arch : i386
Version : 1.9.4
Release : 5.fc10
Size : 4.0 M
Repo : installed
Summary : Amateur Station Tracking and Reporting system for amateur radio
URL : http://www.xastir.org
License : GPLv2+
Description: Xastir is a graphical application that interfaces HAM radio
 : and internet access to realtime mapping software.
 : Install XASTIR if you are interested in APRS(tm) and HAM radio
 : software.

[jjmcd@Cimbaoth ~]$
```

Notice that `yum` also tells you whether the package is installed. Yum also gives you the address of the upstream website so you may learn more about the package before installing it.

B. Revision History

**Revision 16.1**  January 3, 2012  
John McDonough  
jjmcd@fedoraproject.org

Added fldigi back in now that it is working

**Revision 16.0**  December 10, 2011  
John McDonough  
jjmcd@fedoraproject.org

Changes for Fedora 16:
- New screenshots for F16
- Remove fldigi (not working on 16 yet)
- Updates to installation procedures
- Remove references to old GNOME menu
- Add documentation for xnec2c
- Add documentation for gspiceui
- Add documentation for gpredict
- Correct error in xgridloc documentation
- Add documentation for gerbv
- Add documentation for pcb
- Other mostly minor touch-ups

Revision 15.90  November 23, 2011

Remove xdx, obsoleted in Fedora 16
Documentation for Chirp

Revision 0.9  November 9, 2010

Documentation for dxcc
Documentation for gresistor
Documentation for callgit
Correct typo in colrdx
Correct typos in xwota

Revision 0.8  November 7, 2010

Documentation for rcrpanel
Documentation for colrdx
Documentation for xconvers
Documentation for xdx
Documentation for xastir
Documentation for gEDA
Documentation for gerbv
Documentation for pcb
Documentation for xwota

Revision 0.7  November 20, 2009

Installing Software appendix

Revision 0.7  October 31, 2009

Added xlog installation and setup procedures.
| Revision 0.6 | October 29, 2009 | John McDonough  
jjmcd@fedoraproject.org |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ibp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Revision 0.5 | October 29, 2009 | Randy Berry  
randyn3lrx@gmail.com |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cwirc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Revision 0.4 | October 28, 2009 | Eric Christensen  
sparks@fedoraproject.org |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>xlog screenshot</td>
<td></td>
<td>Additional info on fldigi</td>
</tr>
</tbody>
</table>

| Revision 0.3 | October 6, 2009 | John McDonough  
jjmcd@fedoraproject.org |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>xgridloc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Revision 0.2 | October 4, 2009 | John McDonough  
jjmcd@fedoraproject.org |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of SPLAT! instructions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Revision 0.1 | October 1, 2009 | John McDonough  
jjmcd@fedoraproject.org |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Document skeleton</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>