Product SiteDocumentation Site

Fedora Draft Documentation

System Administrator's Guide

Deployment, Configuration, and Administration of Fedora 20

Edition 20.0.1

Jaromír Hradílek

Red Hat Engineering Content Services

Douglas Silas

Red Hat Engineering Content Services

Martin Prpič

Red Hat Engineering Content Services

Stephen Wadeley

Red Hat Engineering Content Services

Eliška Slobodová

Red Hat Engineering Content Services

Tomáš Čapek

Red Hat Engineering Content Services

Petr Kovář

Red Hat Engineering Content Services

Miroslav Svoboda

Red Hat Engineering Content Services

John Ha

Red Hat Engineering Content Services

David O'Brien

Red Hat Engineering Content Services

Michael Hideo

Red Hat Engineering Content Services

Don Domingo

Red Hat Engineering Content Services

Legal Notice

Copyright © 2014 Red Hat, Inc. and others.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/Legal:Trademark_guidelines.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
All other trademarks are the property of their respective owners.
Abstract
The System Administrator's Guide documents relevant information regarding the deployment, configuration, and administration of Fedora 20. It is oriented towards system administrators with a basic understanding of the system.

Preface
1. Target Audience
2. How to Read this Book
3. Document Conventions
3.1. Typographic Conventions
3.2. Pull-quote Conventions
3.3. Notes and Warnings
4. We Need Feedback!
5. Acknowledgments
I. Basic System Configuration
1. Opening Graphical Applications
1.1. Opening graphical applications from the command line
1.2. Launching Applications with Alt+F2
1.3. Launching applications from the Desktop Menu
1.3.1. Using GNOME menus
1.3.2. Using KDE menus
1.3.3. Using menus in LXDE, MATE, and XFCE
2. Configuring the Language and Keyboard
2.1. Changing the Language
2.2. Changing the Date, Time, and Numeric Format
2.3. Changing the Keyboard Layout
2.4. Viewing the Current Configuration
3. Configuring the Date and Time
3.1. Using the Date and Time Configuration Tool
3.2. Using the Command Line Tools
3.2.1. Changing the Date
3.2.2. Changing the Time
3.2.3. Configuring the Network Time Protocol
3.3. Additional Resources
3.3.1. Installed Documentation
4. Managing Users and Groups
4.1. Introduction to Users and Groups
4.1.1. User Private Groups
4.1.2. Shadow Passwords
4.2. Using the User Accounts Tool
4.2.1. Configuring an Account
4.2.2. Adding a New User
4.2.3. Removing a User
4.3. Using the User Manager Tool
4.3.1. Viewing Users and Groups
4.3.2. Adding a New User
4.3.3. Adding a New Group
4.3.4. Modifying User Properties
4.3.5. Modifying Group Properties
4.4. Using Command Line Tools
4.4.1. Adding a New User
4.4.2. Adding a New Group
4.4.3. Enabling Password Aging
4.4.4. Enabling Automatic Logouts
4.4.5. Creating Group Directories
4.5. Additional Resources
4.5.1. Installed Documentation
II. Package Management
5. Yum
5.1. Checking For and Updating Packages
5.1.1. Checking For Updates
5.1.2. Updating Packages
5.1.3. Preserving Configuration File Changes
5.2. Packages and Package Groups
5.2.1. Searching Packages
5.2.2. Listing Packages
5.2.3. Displaying Package Information
5.2.4. Installing Packages
5.2.5. Removing Packages
5.2.6. Working with Transaction History
5.3. Configuring Yum and Yum Repositories
5.3.1. Setting [main] Options
5.3.2. Setting [repository] Options
5.3.3. Using Yum Variables
5.3.4. Viewing the Current Configuration
5.3.5. Adding, Enabling, and Disabling a Yum Repository
5.3.6. Creating a Yum Repository
5.4. Yum Plug-ins
5.4.1. Enabling, Configuring, and Disabling Yum Plug-ins
5.4.2. Installing Additional Yum Plug-ins
5.4.3. Plug-in Descriptions
5.5. Additional Resources
6. PackageKit
6.1. Updating Packages with Software Update
6.1.1. Setting the Update-Checking Interval
6.1.2. Setting the Software Sources
6.2. Using Add/Remove Software
6.2.1. Refreshing Software Sources (Yum Repositories)
6.2.2. Finding Packages with Filters
6.2.3. Installing and Removing Packages (and Dependencies)
6.2.4. Installing and Removing Package Groups
6.2.5. Viewing the Transaction Log
6.3. PackageKit Architecture
6.4. Additional Resources
III. Infrastructure Services
7. Services and Daemons
7.1. Configuring Services
7.1.1. Enabling the Service
7.1.2. Disabling the Service
7.2. Running Services
7.2.1. Checking the Service Status
7.2.2. Running the Service
7.2.3. Stopping the Service
7.2.4. Restarting the Service
7.3. Additional Resources
7.3.1. Installed Documentation
7.3.2. Related Books
8. Configuring Authentication
8.1. Configuring System Authentication
8.1.1. Launching the Authentication Configuration Tool UI
8.1.2. Selecting the Identity Store for Authentication
8.1.3. Configuring Alternative Authentication Features
8.1.4. Setting Password Options
8.1.5. Configuring Authentication from the Command Line
8.1.6. Using Custom Home Directories
8.2. Using and Caching Credentials with SSSD
8.2.1. About the sssd.conf File
8.2.2. Starting and Stopping SSSD
8.2.3. Configuring SSSD to Work with System Services
8.2.4. Creating Domains
8.2.5. Configuring Access Control for SSSD Domains
8.2.6. Configuring Domain Failover
8.2.7. Managing the SSSD Cache
8.2.8. Configuring OpenSSH to Check SSSD for Cached Keys (TECH PREVIEW)
8.2.9. Using NSCD with SSSD
8.2.10. Troubleshooting SSSD
9. OpenSSH
9.1. The SSH Protocol
9.1.1. Why Use SSH?
9.1.2. Main Features
9.1.3. Protocol Versions
9.1.4. Event Sequence of an SSH Connection
9.2. An OpenSSH Configuration
9.2.1. Configuration Files
9.2.2. Starting an OpenSSH Server
9.2.3. Requiring SSH for Remote Connections
9.2.4. Using a Key-Based Authentication
9.3. OpenSSH Clients
9.3.1. Using the ssh Utility
9.3.2. Using the scp Utility
9.3.3. Using the sftp Utility
9.4. More Than a Secure Shell
9.4.1. X11 Forwarding
9.4.2. Port Forwarding
9.5. Additional Resources
9.5.1. Installed Documentation
9.5.2. Useful Websites
IV. Servers
10. Web Servers
10.1. The Apache HTTP Server
10.1.1. New Features
10.1.2. Notable Changes
10.1.3. Updating the Configuration
10.1.4. Running the httpd Service
10.1.5. Editing the Configuration Files
10.1.6. Working with Modules
10.1.7. Setting Up Virtual Hosts
10.1.8. Setting Up an SSL Server
10.1.9. Additional Resources
11. Mail Servers
11.1. Email Protocols
11.1.1. Mail Transport Protocols
11.1.2. Mail Access Protocols
11.2. Email Program Classifications
11.2.1. Mail Transport Agent
11.2.2. Mail Delivery Agent
11.2.3. Mail User Agent
11.3. Mail Transport Agents
11.3.1. Postfix
11.3.2. Sendmail
11.3.3. Fetchmail
11.3.4. Mail Transport Agent (MTA) Configuration
11.4. Mail Delivery Agents
11.4.1. Procmail Configuration
11.4.2. Procmail Recipes
11.5. Mail User Agents
11.5.1. Securing Communication
11.6. Additional Resources
11.6.1. Installed Documentation
11.6.2. Useful Websites
11.6.3. Related Books
12. Directory Servers
12.1. OpenLDAP
12.1.1. Introduction to LDAP
12.1.2. Installing the OpenLDAP Suite
12.1.3. Configuring an OpenLDAP Server
12.1.4. Running an OpenLDAP Server
12.1.5. Configuring a System to Authenticate Using OpenLDAP
12.1.6. Additional Resources
13. File and Print Servers
13.1. Samba
13.1.1. Introduction to Samba
13.1.2. Samba Daemons and Related Services
13.1.3. Connecting to a Samba Share
13.1.4. Configuring a Samba Server
13.1.5. Starting and Stopping Samba
13.1.6. Samba Server Types and the smb.conf File
13.1.7. Samba Security Modes
13.1.8. Samba Account Information Databases
13.1.9. Samba Network Browsing
13.1.10. Samba with CUPS Printing Support
13.1.11. Samba Distribution Programs
13.1.12. Additional Resources
13.2. FTP
13.2.1. The File Transfer Protocol
13.2.2. FTP Servers
13.2.3. Files Installed with vsftpd
13.2.4. Starting and Stopping vsftpd
13.2.5. vsftpd Configuration Options
13.2.6. Additional Resources
13.3. Printer Configuration
13.3.1. Starting the Printer Configuration Tool
13.3.2. Starting Printer Setup
13.3.3. Adding a Local Printer
13.3.4. Adding an AppSocket/HP JetDirect printer
13.3.5. Adding an IPP Printer
13.3.6. Adding an LPD/LPR Host or Printer
13.3.7. Adding a Samba (SMB) printer
13.3.8. Selecting the Printer Model and Finishing
13.3.9. Printing a test page
13.3.10. Modifying Existing Printers
13.3.11. Additional Resources
14. Configuring NTP Using the chrony Suite
14.1. Introduction to the chrony Suite
14.1.1. Differences Between ntpd and chronyd
14.1.2. Choosing Between NTP Daemons
14.2. Understanding chrony and Its Configuration
14.2.1. Understanding chronyd
14.2.2. Understanding chronyc
14.2.3. Understanding the chrony Configuration Commands
14.2.4. Security with chronyc
14.3. Using chrony
14.3.1. Checking if chrony is Installed
14.3.2. Installing chrony
14.3.3. Checking the Status of chronyd
14.3.4. Starting chronyd
14.3.5. Stopping chronyd
14.3.6. Checking if chrony is Synchronized
14.3.7. Manually Adjusting the System Clock
14.4. Setting Up chrony for Different Environments
14.4.1. Setting Up chrony for a System Which is Infrequently Connected
14.4.2. Setting Up chrony for a System in an Isolated Network
14.5. Using chronyc
14.5.1. Using chronyc to Control chronyd
14.5.2. Using chronyc for Remote Administration
14.6. Additional Resources
14.6.1. Installed Documentation
14.6.2. Useful Websites
15. Configuring NTP Using ntpd
15.1. Introduction to NTP
15.2. NTP Strata
15.3. Understanding NTP
15.4. Understanding the Drift File
15.5. UTC, Timezones, and DST
15.6. Authentication Options for NTP
15.7. Managing the Time on Virtual Machines
15.8. Understanding Leap Seconds
15.9. Understanding the ntpd Configuration File
15.10. Understanding the ntpd Sysconfig File
15.11. Disabling chrony
15.12. Checking if the NTP Daemon is Installed
15.13. Installing the NTP Daemon (ntpd)
15.14. Checking the Status of NTP
15.15. Configure the Firewall to Allow Incoming NTP Packets
15.15.1. Change the Firewall Settings
15.15.2. Open Ports in the Firewall for NTP Packets
15.16. Configure NTP
15.16.1. Configure Access Control to an NTP Service
15.16.2. Configure Rate Limiting Access to an NTP Service
15.16.3. Adding a Peer Address
15.16.4. Adding a Server Address
15.16.5. Adding a Broadcast or Multicast Server Address
15.16.6. Adding a Manycast Client Address
15.16.7. Adding a Broadcast Client Address
15.16.8. Adding a Manycast Server Address
15.16.9. Adding a Multicast Client Address
15.16.10. Configuring the Burst Option
15.16.11. Configuring the iburst Option
15.16.12. Configuring Symmetric Authentication Using a Key
15.16.13. Configuring the Poll Interval
15.16.14. Configuring Server Preference
15.16.15. Configuring the Time-to-Live for NTP Packets
15.16.16. Configuring the NTP Version to Use
15.17. Configuring the Hardware Clock Update
15.18. Configuring Clock Sources
15.19. Additional Resources
15.19.1. Installed Documentation
15.19.2. Useful Websites
16. Configuring PTP Using ptp4l
16.1. Introduction to PTP
16.1.1. Understanding PTP
16.1.2. Advantages of PTP
16.2. Using PTP
16.2.1. Checking for Driver and Hardware Support
16.2.2. Installing PTP
16.2.3. Starting ptp4l
16.3. Specifying a Configuration File
16.4. Using the PTP Management Client
16.5. Synchronizing the Clocks
16.6. Verifying Time Synchronization
16.7. Serving PTP Time with NTP
16.8. Serving NTP Time with PTP
16.9. Improving Accuracy
16.10. Additional Resources
16.10.1. Installed Documentation
16.10.2. Useful Websites
V. Monitoring and Automation
17. System Monitoring Tools
17.1. Viewing System Processes
17.1.1. Using the ps Command
17.1.2. Using the top Command
17.1.3. Using the System Monitor Tool
17.2. Viewing Memory Usage
17.2.1. Using the free Command
17.2.2. Using the System Monitor Tool
17.3. Viewing CPU Usage
17.3.1. Using the System Monitor Tool
17.4. Viewing Block Devices and File Systems
17.4.1. Using the lsblk Command
17.4.2. Using the blkid Command
17.4.3. Using the partx Command
17.4.4. Using the findmnt Command
17.4.5. Using the df Command
17.4.6. Using the du Command
17.4.7. Using the System Monitor Tool
17.5. Viewing Hardware Information
17.5.1. Using the lspci Command
17.5.2. Using the lsusb Command
17.5.3. Using the lspcmcia Command
17.5.4. Using the lscpu Command
17.6. Monitoring Performance with Net-SNMP
17.6.1. Installing Net-SNMP
17.6.2. Running the Net-SNMP Daemon
17.6.3. Configuring Net-SNMP
17.6.4. Retrieving Performance Data over SNMP
17.6.5. Extending Net-SNMP
17.7. Additional Resources
17.7.1. Installed Documentation
18. Viewing and Managing Log Files
18.1. Configuring rsyslog
18.1.1. Global Directives
18.1.2. Modules
18.1.3. Rules
18.1.4. rsyslog Command Line Configuration
18.2. Locating Log Files
18.2.1. Configuring logrotate
18.3. Viewing Log Files
18.4. Adding a Log File
18.5. Monitoring Log Files
18.6. Additional Resources
18.6.1. Installed Documentation
18.6.2. Useful Websites
19. Automating System Tasks
19.1. Cron and Anacron
19.1.1. Starting and Stopping the Service
19.1.2. Configuring Anacron Jobs
19.1.3. Configuring Cron Jobs
19.1.4. Controlling Access to Cron
19.1.5. Black/White Listing of Cron Jobs
19.2. At and Batch
19.2.1. Configuring At Jobs
19.2.2. Configuring Batch Jobs
19.2.3. Viewing Pending Jobs
19.2.4. Additional Command Line Options
19.2.5. Controlling Access to At and Batch
19.2.6. Starting and Stopping the Service
19.3. Additional Resources
19.3.1. Installed Documentation
20. Automatic Bug Reporting Tool (ABRT)
20.1. Overview
20.2. Installing ABRT and Starting its Services
20.3. Running ABRT
20.3.1. Using the Graphical User Interface
20.3.2. Using the Command Line Interface
20.4. Configuring ABRT
20.4.1. ABRT Events
20.4.2. Standard ABRT Installation Supported Events
20.4.3. Event Configuration in ABRT GUI
20.4.4. ABRT Specific Configuration
20.4.5. Configuring Automatic Reporting
20.4.6. Uploading and reporting using a proxy server
20.5. Configuring Centralized Crash Collection
20.5.1. Configuration Steps Required on a Dedicated System
20.5.2. Configuration Steps Required on a Client System
20.5.3. Saving Package Information
20.5.4. Testing ABRT's Crash Detection
21. OProfile
21.1. Overview of Tools
21.2. Configuring OProfile
21.2.1. Specifying the Kernel
21.2.2. Setting Events to Monitor
21.2.3. Separating Kernel and User-space Profiles
21.3. Starting and Stopping OProfile
21.4. Saving Data
21.5. Analyzing the Data
21.5.1. Using opreport
21.5.2. Using opreport on a Single Executable
21.5.3. Getting more detailed output on the modules
21.5.4. Using opannotate
21.6. Understanding /dev/oprofile/
21.7. Example Usage
21.8. OProfile Support for Java
21.8.1. Profiling Java Code
21.9. Graphical Interface
21.10. OProfile and SystemTap
21.11. Additional Resources
21.11.1. Installed Docs
21.11.2. Useful Websites
VI. Kernel, Module and Driver Configuration
22. Manually Upgrading the Kernel
22.1. Overview of Kernel Packages
22.2. Preparing to Upgrade
22.3. Downloading the Upgraded Kernel
22.4. Performing the Upgrade
22.5. Verifying the Initial RAM Disk Image
22.6. Verifying the Boot Loader
22.6.1. Configuring the GRUB 2 Boot Loader
22.6.2. Configuring the OS/400 Boot Loader
22.6.3. Configuring the YABOOT Boot Loader
23. Working with Kernel Modules
23.1. Listing Currently-Loaded Modules
23.2. Displaying Information About a Module
23.3. Loading a Module
23.4. Unloading a Module
23.5. Setting Module Parameters
23.6. Persistent Module Loading
23.7. Specific Kernel Module Capabilities
23.7.1. Using Multiple Ethernet Cards
23.7.2. Using Channel Bonding
23.8. Additional Resources
23.8.1. Installed Documentation
23.8.2. Useful Websites
24. The kdump Crash Recovery Service
24.1. Installing the kdump Service
24.2. Configuring the kdump Service
24.2.1. Configuring the kdump at First Boot
24.2.2. Using the Kernel Dump Configuration Utility
24.2.3. Configuring kdump on the Command Line
24.2.4. Testing the Configuration
24.3. Analyzing the Core Dump
24.3.1. Running the crash Utility
24.3.2. Displaying the Message Buffer
24.3.3. Displaying a Backtrace
24.3.4. Displaying a Process Status
24.3.5. Displaying Virtual Memory Information
24.3.6. Displaying Open Files
24.3.7. Exiting the Utility
24.4. Additional Resources
24.4.1. Installed Documentation
24.4.2. Useful Websites
A. RPM
A.1. RPM Design Goals
A.2. Using RPM
A.2.1. Finding RPM Packages
A.2.2. Installing and Upgrading
A.2.3. Configuration File Changes
A.2.4. Uninstalling
A.2.5. Freshening
A.2.6. Querying
A.2.7. Verifying
A.3. Checking a Package's Signature
A.3.1. Importing Keys
A.3.2. Verifying Signature of Packages
A.4. Practical and Common Examples of RPM Usage
A.5. Additional Resources
A.5.1. Installed Documentation
A.5.2. Useful Websites
A.5.3. Related Books
B. The X Window System
B.1. The X Server
B.2. Desktop Environments and Window Managers
B.2.1. Desktop Environments
B.2.2. Window Managers
B.3. X Server Configuration Files
B.3.1. The Structure of the Configuration
B.3.2. The xorg.conf.d Directory
B.3.3. The xorg.conf File
B.4. Fonts
B.4.1. Adding Fonts to Fontconfig
B.5. Runlevels and X
B.5.1. Runlevel 3
B.5.2. Runlevel 5
B.6. Additional Resources
B.6.1. Installed Documentation
B.6.2. Useful Websites
C. Revision History
Index

Preface

The System Administrator's Guide contains information on how to customize the Fedora 20 system to fit your needs. If you are looking for a comprehensive, task-oriented guide for configuring and customizing your system, this is the manual for you.
This manual discusses many intermediate topics such as the following:
  • Installing and managing packages using the graphical PackageKit and command line Yum package managers
  • Configuring Apache HTTP Server, Postfix, Sendmail and other enterprise-class servers and software
  • Gathering information about your system, including obtaining user-space crash data with the Automatic Bug Reporting Tool, and kernel-space crash data with kdump
  • Working with kernel modules and upgrading the kernel

1. Target Audience

The System Administrator's Guide assumes you have a basic understanding of the Fedora operating system. If you need help with the installation of this system, refer to the Fedora 20 Installation Guide.

2. How to Read this Book

This manual is divided into the following main categories:
Part I, “Basic System Configuration”
This part covers basic system administration tasks such as keyboard configuration, date and time configuration, and managing users and groups.
Chapter 2, Configuring the Language and Keyboard covers basic language and keyboard setup. Read this chapter if you need to configure the language of your desktop, change the keyboard layout, or add the keyboard layout indicator to the panel.
Chapter 3, Configuring the Date and Time covers the configuration of the system date and time. Read this chapter if you need to set or change the date and time.
Chapter 4, Managing Users and Groups covers the management of users and groups in a graphical user interface and on the command line. Read this chapter if you need to manage users and groups on your system, or enable password aging.
Part II, “Package Management”
This part describes how to manage software packages on Fedora using both Yum and the PackageKit suite of graphical package management tools.
Chapter 5, Yum describes the Yum package manager. Read this chapter for information how to search, install, update, and uninstall packages on the command line.
Chapter 6, PackageKit describes the PackageKit suite of graphical package management tools. Read this chapter for information how to search, install, update, and uninstall packages using a graphical user interface.
Part III, “Infrastructure Services”
This part provides information on how to configure services and daemons, configure authentication, and enable remote logins.
Chapter 7, Services and Daemons covers the configuration of the services to be run when a system is started, and provides information on how to start, stop, and restart the services on the command line using the systemctl utility.
Chapter 8, Configuring Authentication describes how to configure user information retrieval from Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind user account databases, and provides an introduction to the System Security Services Daemon (SSSD). Read this chapter if you need to configure authentication on your system.
Chapter 9, OpenSSH describes how to enable a remote login via the SSH protocol. It covers the configuration of the sshd service, as well as a basic usage of the ssh, scp, sftp client utilities. Read this chapter if you need a remote access to a machine.
Part IV, “Servers”
This part discusses various topics related to servers such as how to set up a Web server or share files and directories over the network.
Chapter 10, Web Servers focuses on the Apache HTTP Server 2.2, a robust, full-featured open source web server developed by the Apache Software Foundation. Read this chapter if you need to configure a web server on your system.
Chapter 11, Mail Servers reviews modern email protocols in use today, and some of the programs designed to send and receive email, including Postfix, Sendmail, Fetchmail, and Procmail. Read this chapter if you need to configure a mail server on your system.
Chapter 12, Directory Servers covers the installation and configuration of OpenLDAP 2.4, an open source implementation of the LDAPv2 and LDAPv3 protocols. Read this chapter if you need to configure a directory server on your system.
Chapter 13, File and Print Servers guides you through the installation and configuration of Samba, an open source implementation of the Server Message Block (SMB) protocol, and vsftpd, the primary FTP server shipped with Fedora. Additionally, it explains how to use the Printer Configuration tool to configure printers. Read this chapter if you need to configure a file or print server on your system.
Chapter 14, Configuring NTP Using the chrony Suite covers the installation and configuration of the chrony suite, a client and a server for the Network Time Protocol (NTP). Read this chapter if you need to configure the system to synchronize the clock with a remote NTP server, or set up an NTP server on this system.
Chapter 15, Configuring NTP Using ntpd covers the installation and configuration of the NTP daemon, ntpd, for the Network Time Protocol (NTP). Read this chapter if you need to configure the system to synchronize the clock with a remote NTP server, or set up an NTP server on this system, and you prefer not to use the chrony application.
Chapter 16, Configuring PTP Using ptp4l covers the installation and configuration of the Precision Time Protocol application, ptp4l, an application for use with network drivers that support the Precision Network Time Protocol (PTP). Read this chapter if you need to configure the system to synchronize the system clock with a master PTP clock.
Part V, “Monitoring and Automation”
This part describes various tools that allow system administrators to monitor system performance, automate system tasks, and report bugs.
Chapter 17, System Monitoring Tools discusses applications and commands that can be used to retrieve important information about the system. Read this chapter to learn how to gather essential system information.
Chapter 18, Viewing and Managing Log Files describes the configuration of the rsyslog daemon, and explains how to locate, view, and monitor log files. Read this chapter to learn how to work with log files.
Chapter 19, Automating System Tasks provides an overview of the cron, at, and batch utilities. Read this chapter to learn how to use these utilities to perform automated tasks.
Chapter 20, Automatic Bug Reporting Tool (ABRT) concentrates on ABRT, a system service and a set of tools to collect crash data and send a report to the relevant issue tracker. Read this chapter to learn how to use ABRT on your system.
Chapter 21, OProfile covers OProfile, a low overhead, system-wide performance monitoring tool. Read this chapter for information on how to use OProfile on your system.
Part VI, “Kernel, Module and Driver Configuration”
This part covers various tools that assist administrators with kernel customization.
Chapter 22, Manually Upgrading the Kernel provides important information on how to manually update a kernel package using the rpm command instead of yum. Read this chapter if you cannot update a kernel package with the Yum package manager.
Chapter 23, Working with Kernel Modules explains how to display, query, load, and unload kernel modules and their dependencies, and how to set module parameters. Additionally, it covers specific kernel module capabilities such as using multiple Ethernet cards and using channel bonding. Read this chapter if you need to work with kernel modules.
Chapter 24, The kdump Crash Recovery Service explains how to configure, test, and use the kdump service in Fedora, and provides a brief overview of how to analyze the resulting core dump using the crash debugging utility. Read this chapter to learn how to enable kdump on your system.
Appendix A, RPM
This appendix concentrates on the RPM Package Manager (RPM), an open packaging system used by Fedora, and the use of the rpm utility. Read this appendix if you need to use rpm instead of yum.
Appendix B, The X Window System
This appendix covers the configuration of the X Window System, the graphical environment used by Fedora. Read this appendix if you need to adjust the configuration of your X Window System.

3. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

3.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
Mono-spaced Bold
Used to highlight system input, including shell commands, file names and paths. Also used to highlight keycaps and key combinations. For example:
To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold and all distinguishable thanks to context.
Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key combination. For example:
Press Enter to execute the command.
Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to return to your X-Windows session.
The first paragraph highlights the particular keycap to press. The second highlights two key combinations (each a set of three keycaps with each set pressed simultaneously).
If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
Proportional Bold
This denotes words or phrases encountered on a system, including application names; dialog box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:
Choose SystemPreferencesMouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
To insert a special character into a gedit file, choose ApplicationsAccessoriesCharacter Map from the main menu bar. Next, choose SearchFind… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose EditPaste from the gedit menu bar.
The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
Mono-spaced Bold Italic or Proportional Bold Italic
Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
Note the words in bold italics above — username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
Publican is a DocBook publishing system.

3.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.
Output sent to a terminal is set in mono-spaced roman and presented thus:
books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs
Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

3.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

4. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla: https://bugzilla.redhat.com/enter_bug.cgi?product=Fedora Documentation&component=system-administrator's-guide
If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.

5. Acknowledgments

Certain portions of this text first appeared in the Deployment Guide, copyright © 2007 Red Hat, Inc., available at https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html.
Section 17.6, “Monitoring Performance with Net-SNMP” is based on an article written by Michael Solberg.
The authors of this book would like to thank the following people for their valuable contributions: Adam Tkáč, Andrew Fitzsimon, Andrius Benokraitis, Brian Cleary Edward Bailey, Garrett LeSage, Jeffrey Fearn, Joe Orton, Joshua Wulf, Karsten Wade, Lucy Ringland, Marcela Mašláňová, Mark Johnson, Michael Behm, Miroslav Lichvár, Radek Vokál, Rahul Kavalapara, Rahul Sundaram, Sandra Moore, Zbyšek Mráz, Jan Včelák, Peter Hutterer, T.C. Hollingsworth, and James Antill, among many others.

Part I. Basic System Configuration

This part covers basic system administration tasks such as keyboard configuration, date and time configuration, installation and initial setup of an NTP server, and managing users and groups.

Chapter 1. Opening Graphical Applications

Fedora provides graphical applications in addition to command line utilities for configuring many features. This chapter describes methods for opening Graphical User Interface, or GUI, applications in various environments.

1.1. Opening graphical applications from the command line

Graphical applications can be launched from a terminal window or console session by simply typing the name of the application.
[fedorauser@localhost]$ firefox

File names vs Application names

Programs are opened from the command line using the name of executable file provided in the program's package. An entry in the desktop menu will often be named differently from the file it executes. For example, the GNOME disk management utility appears in the menu as Disks, and the file it executes is /usr/bin/gnome-disks.
When a program is executed on the command line, the terminal is occupied until the program completes. When a graphical application is executed from the command line, the program's error output, or STDERR, is sent to the terminal window. This can be especially useful when troubleshooting.
Example 1.1. Viewing errors by launching graphical applications from the command line
[fedorauser@localhost]$ astromenace-wrapper
	AstroMenace 1.3.1 121212

	Open XML file: /home/fedorauser/.config/astromenace/amconfig.xml
	VFS file was opened /usr/share/astromenace/gamedata.vfs
	
	Vendor     : OpenAL Community
	Renderer   : OpenAL Soft
	Version    : 1.1 ALSOFT 1.15.1
	ALut ver   : 1.1

	Font initialized: DATA/FONT/LiberationMono-Bold.ttf

	Current Video Mode: 3200x1080 32bit 
	
	Xinerama/TwinView detected.
	Screen count: 2
	Screen #0: (0, 0) x (1920, 1080)
	Screen #1: (1920, 0) x (1280, 1024)
	
	Supported resolutions list:
	640x480 16bit 
	640x480 32bit 
	640x480 0bit 
	768x480 16bit
	<output truncated>

To launch a graphical application, but fork the additional output into the background and return the terminal for immediate use, use the shell's job control feature.
[fedorauser@localhost]$ emacs foo.txt &

Ending a session

Applications that hold the command line prompt until they complete will close when the terminal session ends, even if they are forked into the background.
GUI programs can also be launched on one TTY and displayed on another by specifying the DISPLAY variable. This can be useful when running multiple graphical sessions, or for troubleshooting problems with a desktop session.
  1. Switch to another TTY using the key combination Ctrl-Alt-F2 and log in. Note that consoles are available by default with F2 through F6.
  2. Identify the X session you want to target. The DISPLAY variable is always an integer preceded by a colon, and will be :0 in most cases. Check the arguments of the currently running X process to verify the value. The command below shows both the DISPLAY variable as well as the TTY that X is running on, tty1.
    [fedorauser@localhost]$ ps aux|grep /usr/bin/X
    root      1498  7.1  1.0 521396 353984 tty1    Ss+  00:04  66:34 /usr/bin/X :0 vt1 -background none -nolisten tcp -auth /var/run/kdm/A:0-22Degc
    
    root     23874  0.0  0.0 109184   900 pts/21   S+   15:35   0:00 grep --color=auto /usr/bin/X
  3. Specify the DISPLAY variable when executing the program.
    [fedorauser@localhost]$ DISPLAY=:0 gnome-shell --replace &
  4. Switch back to the TTY the graphical session is running on. Since the example above shows X running on vt1, pressing Ctrl+Alt+F1 will return to the desktop environment.

1.2.  Launching Applications with Alt+F2

Most desktop environments follow the convention of using the key combination Alt+F2 for opening new applications. Pressing Alt+F2 brings up a prompt for a command to be entered into.
Commands entered into this dialog box function much as they would if entered in a terminal. Applications are known by their file name, and can accept arguments.
Using AltF2 with GNOME
GNOME command entry dialog box
Figure 1.1.  Using Alt+F2 with GNOME

Using AltF2 with KDE
KDE command entry dialog box, which also searches menu items, command history, and open applications.
Figure 1.2.  Using Alt+F2 with KDE

Using AltF2 with LXDE
LXDE command entry dialog box.
Figure 1.3.  Using Alt+F2 with LXDE

Using AltF2 with MATE
MATE command entry dialog box.
Figure 1.4.  Using Alt+F2 with MATE

Using AltF2 with XFCE
XFCE command entry dialog box.
Figure 1.5.  Using Alt+F2 with XFCE

1.3. Launching applications from the Desktop Menu

Applications can also be opened from the menu system provided by the desktop environment in use. While the presentation may vary between desktop environments, the menu entries and their categories are provided by the individual application and standardized by the freedesktop.org Desktop Menu Specification. Some desktop environments also provide search functionality in their menu system to allow quick and easy access to applications.

1.3.1. Using GNOME menus

The GNOME menu, called the overview, can be accessed by either clicking the Activities button in the top left of the primary display, by moving the mouse past the top left hot corner, or by pressing the Super ( Windows ) key. The overview presents documents in addition to applications.
Selecting an item from the menu is best accomplished using the search box. Simply bring up the overview, and begin typing the name of the application you want to launch. Pressing enter will launch the highlighted application, or you can use the arrow keys or mouse to choose an alternative.
Using the GNOME search box
Typing the name of an application into the overview search box will display matching menu entries. The search also matches descriptions, so that typing browser will display installed browsers.
Figure 1.6.  Using the GNOME search box

The overview can also be browsed. The bar on the left, called the dash, shows frequently used applications and grid icon. Clicking on the grid icon brings up a grid in the center of the window that displays more frequent applications. The grid will display all available applications if selected using the All button at the bottom of the screen.
Browsing GNOME menu entries
The GNOME menu has a bar on the left for frequently used applications, which includes a grid icon that brings up a grid in the center of the window. Users can then use the buttons at the bottom of the screen to display either a larger list of frequently used applications, or to view all available applications.
Figure 1.7.  Browsing GNOME menu entries

To learn more about using GNOME shell, visit https://wiki.gnome.org/GnomeShell/CheatSheet

1.3.2.  Using KDE menus

The KDE menu is opened by clicking the Fedora button at the bottom left corner of the screen. The menu initially displays favorite applications, which can be added to by right clicking any menu entry. Hovering over the icons in the lower portion of the menu will display applications, file systems, recently used applications, or options for logging out of the system.
The KDE desktop menu.
The KDE menu displays applications in categories. The contents of the categories are displayed when clicked.
Figure 1.8.  The KDE desktop menu.

Search functionality is also available in the KDE menu system. To search for applications, open the menu and begin typing. The menu will display matching entries.
Searching with the KDE menu.
The KDE menu will search for matching applications if you type into the search box. For example, typing browser will display installed browsers and other matching entries.
Figure 1.9.  Searching with the KDE menu.

1.3.3. Using menus in LXDE, MATE, and XFCE

Menus in LXDE, MATE, and XFCE have a varied appearance but a very similar structure. They categorize applications, and the contents of a category are displayed by hovering the cursor over the entry. Applications are launched by clicking on an entry.
The LXDE menu
LXDE Menu
Figure 1.10.  The LXDE menu

MATE menu
MATE menu
Figure 1.11.  MATE menu

XFCE Menu
XFCE Menu
Figure 1.12.  XFCE Menu

Chapter 2. Configuring the Language and Keyboard

Fedora 20 is shipped with the Region and Language configuration tool, which allows you to configure keyboard layouts, the language of your desktop environment, and other regional settings. To start the tool, open the System Settings window by selecting ApplicationsSystem ToolsSystem Settings from the Activities menu, and click Region and Language.

2.1. Changing the Language

To configure the language of your desktop, select the Language tab of the Region and Language application. You will be presented with a short list of common languages.
Changing the language
Changing the language
Figure 2.1. Changing the language

By default, this list only contains a few of the available languages. To add another language, click the + (the plus sign) button below the list. A dialog window appears, allowing you to select the desired language. The input field at the bottom part of the dialog window allows you to reduce the number of displayed items by first few letters part of the language name in it (for example, slov for the Slovak language). Once you select a language, click the Select button to confirm your choice.
Adding another language
Adding a language
Figure 2.2. Adding another language

To choose a particular language from the list, click its name to select it. The changes will take effect the next time you log in to the system.

2.2. Changing the Date, Time, and Numeric Format

To change the default date, time, number, and currency format, select the Formats tab of the Region and Language application. You will be presented with a short list of available formats.
Changing the date, time, and numeric format
Changing the date, time, and numeric format
Figure 2.3. Changing the date, time, and numeric format

By default, this list only contains a few of the available formats. To add another format, click the + (the plus sign) button below the list. A dialog window appears, allowing you to select the desired format according to a region. The input field at the bottom part of the dialog window allows you to reduce the number of displayed items by typing first few letters of the region name in it (for example, slov for Slovakia). Once you select a region, click the Select button to confirm your choice.
Adding a format
Adding a format
Figure 2.4. Adding a format

To choose a particular format from the list, click its name to select it. The changes will take effect the next time you log in to the system.

2.3. Changing the Keyboard Layout

Although the installation program allows a system administrator to configure a keyboard layout during the system installation, the default settings may not always suit your current needs. To change the default keyboard layout, select the Layouts tab of the Region and Language application. You will be presented with a list of currently enabled layouts.
Changing the keyboard layout
Changing the keyboard layout
Figure 2.5. Changing the keyboard layout

To add a layout to the list, click the + (the plus sign) button below the list. A dialog window appears, allowing you to select the desired keyboard layout. The input field at the bottom part of the dialog window allows you to reduce the number of displayed items by typing first few letters of the layout name in it (for example, slov for a Slovak layout). Once you select a layout, click the Add button to confirm your choice.
Adding a keyboard layout
Adding a keyboard layout
Figure 2.6. Adding a keyboard layout

The first layout in the list is always considered the default. To move a particular layout up or down in the list, select it and click the (the upwards arrow) or (the downwards arrow) buttons respectively. To remove a layout, click the (that is, the minus sign) button. Additionally, by selecting an option button on the right side of the window, you can choose if you want to use different keyboard layouts for individual windows, or a single layout for all windows.
When more than one layout is enabled, a keyboard indicator appears on the panel in order to allow you to switch between the layouts.
The keyboard layout indicator
The keyboard layout indicator
Figure 2.7. The keyboard layout indicator

2.4. Viewing the Current Configuration

To view the current configuration, select the System tab of the Region and Language application. You will be presented with a comparison of your own configuration and system-wide settings.
Viewing the current configuration
Viewing the current configuration
Figure 2.8. Viewing the current configuration

Chapter 3. Configuring the Date and Time

This chapter covers setting the system date and time in Fedora, both manually and using the Network Time Protocol (NTP), as well as setting the time zone. Two methods are covered: setting the date and time using the Date and Time configuration tool, and doing so on the command line.

3.1. Using the Date and Time Configuration Tool

Fedora 20 is shipped with the Date and Time configuration tool, which allows you to change the date and time of the system, to configure the time zone used by the system, and to set up the Network Time Protocol daemon to synchronize the system clock with a time server. To start the tool, either select ApplicationsSystem ToolsSystem Settings from the Activities menu and click the Date and Time icon, or click the time in the panel and select Date and Time Settings from the drop-down menu.
The Date and Time configuration tool
The Date and Time configuration tool
Figure 3.1. The Date and Time configuration tool

By default, the tool only allows you to review the current settings. This is because only root is allowed to set the system date and time. To unlock the configuration tool for changes, click the Unlock button in the top-right corner of the window, and provide the correct password when prompted.
To change the current time of your system, either configure the system to synchronize it over the network by clicking the Network Time switch, or set it manually by clicking the up and down arrows above and below the numbers. You can also select 24-hour or AM/PM to enable or disable the 24-hour time format.
To change the time zone, either click on the map, or select the region and city from the Region and City drop-down lists.
To change the current date of your system, select a month from the drop-down list below the time, and use the up and down arrows to choose the day and year.
The changes take effect immediately.

3.2. Using the Command Line Tools

Fedora 20 provides command line tools that allow you to configure the date and time both manually and using the NTP protocol.

3.2.1. Changing the Date

To change the system date, type the following at a shell prompt as root:
date +%D -s YYYY-MM-DD
…where YYYY is a four-digit year, MM is a two-digit month, and DD is a two-digit day of the month. For example, to change the date to 2 June 2010, type:
~]# date +%D -s 2010-06-02
You can verify the current settings by running date without any additional argument.

3.2.2. Changing the Time

To change the current time, run the following command as root:
date +%T -s HH:MM:SS
…where HH stands for an hour, MM is a minute, and SS is a second, all typed in a two-digit form. If your system clock is set to use UTC (Coordinated Universal Time), also add the following option:
date +%T -s HH:MM:SS -u
For instance, to set the system clock to 11:26 PM using the UTC, type:
~]# date +%T -s 23:26:00 -u
You can verify the current settings by running date without any additional argument. You should not use this command to set the time if the system clock is being maintained by chrony, ntpd, or any other similar automated process.

3.2.3. Configuring the Network Time Protocol

Fedora includes the chrony suite of programs to automatically adjust the system clock using the Network Time Protocol (NTP). See Chapter 14, Configuring NTP Using the chrony Suite for information on configuring and enabling chrony.
It is also possible to use ntpd to adjust the system clock using the Network Time Protocol (NTP). See Chapter 15, Configuring NTP Using ntpd for information on configuring ntpd.

3.3. Additional Resources

For more information about the date and time configuration, refer to the following resources.

3.3.1. Installed Documentation

  • date(1) — The manual page for the date utility.

Chapter 4. Managing Users and Groups

The control of users and groups is a core element of Fedora system administration. This chapter explains how to add, manage, and delete users and groups in the graphical user interface and on the command line, and covers advanced topics, such as enabling password aging or creating group directories.

4.1. Introduction to Users and Groups

While users can be either people (meaning accounts tied to physical users) or accounts which exist for specific applications to use, groups are logical expressions of organization, tying users together for a common purpose. Users within a group can read, write, or execute files owned by that group.
Each user is associated with a unique numerical identification number called a user ID (UID). Likewise, each group is associated with a group ID (GID). A user who creates a file is also the owner and group owner of that file. The file is assigned separate read, write, and execute permissions for the owner, the group, and everyone else. The file owner can be changed only by root, and access permissions can be changed by both the root user and file owner.
Additionally, Fedora supports access control lists (ACLs) for files and directories which allow permissions for specific users outside of the owner to be set. Refer to For more information about this feature, refer to the Access Control Lists chapter of the Storage Administration Guide.

4.1.1. User Private Groups

Fedora uses a user private group (UPG) scheme, which makes UNIX groups easier to manage. A user private group is created whenever a new user is added to the system. It has the same name as the user for which it was created and that user is the only member of the user private group.
User private groups make it safe to set default permissions for a newly created file or directory, allowing both the user and the group of that user to make modifications to the file or directory.
The setting which determines what permissions are applied to a newly created file or directory is called a umask and is configured in the /etc/bashrc file. Traditionally on UNIX systems, the umask is set to 022, which allows only the user who created the file or directory to make modifications. Under this scheme, all other users, including members of the creator's group, are not allowed to make any modifications. However, under the UPG scheme, this group protection is not necessary since every user has their own private group.

4.1.2. Shadow Passwords

Especially in environments with multiple users, it is very important to use shadow passwords provided by the shadow-utils package to enhance the security of system authentication files. For this reason, the installation program enables shadow passwords by default.
The following is a list of the advantages shadow passwords have over the traditional way of storing passwords on UNIX-based systems:
  • Shadow passwords improve system security by moving encrypted password hashes from the world-readable /etc/passwd file to /etc/shadow, which is readable only by the root user.
  • Shadow passwords store information about password aging.
  • Shadow passwords allow the /etc/login.defs file to enforce security policies.
Most utilities provided by the shadow-utils package work properly whether or not shadow passwords are enabled. However, since password aging information is stored exclusively in the /etc/shadow file, any commands which create or modify password aging information do not work. The following is a list of utilities and commands that do not work without first enabling shadow passwords:
  • The chage utility.
  • The gpasswd utility.
  • The usermod command with the -e or -f option.
  • The useradd command with the -e or -f option.

4.2. Using the User Accounts Tool

The User Accounts configuration tool allows you to view, modify, add, and delete local users. To run the tool, select ApplicationsSystem ToolsSystem Settings from the Activities menu and click the User Accounts icon.
The User Accounts configuration tool
The User Accounts configuration tool
Figure 4.1. The User Accounts configuration tool

By default, the tool only allows you to change certain settings regarding your account. This is because only the root user is allowed to configure users and groups. To unlock the configuration tool for all kinds of changes, click the Unlock button in the top-right corner of the window, and provide the correct password when prompted.

4.2.1. Configuring an Account

To change the image associated with an account, click the icon next to the account name and either select a picture from the pulldown list, or click Browse for more pictures... to use an image from your local drive.
To change the name associated with an account, click the name next to the icon to edit it.
To change the account type, click the text next to the Account type label. Note that this change requires the configuration tool to be unlocked even if you are changing your own account.
To change the default language for an account, click the text next to the Language label and select a language from the list.
To change the password, click the field next to the Password label. A dialog box appears, allowing you to set the new password. Note that the current password must be provided in order to confirm the change. Once done, click the Change button to save the change.
Changing the password
Changing the password
Figure 4.2. Changing the password

Password security advice

It is advisable to use a much longer password, as this makes it more difficult for an intruder to guess it and access the account without permission. It is also recommended that the password not be based on a dictionary term: use a combination of letters, numbers and special characters.
Finally, to set up automatic login for a particular account, enable the Automatic Login switch. The configuration tool must be unlocked to make this change.

4.2.2. Adding a New User

To add a new user, make sure the configuration tool is unlocked, and click the + button (that is, the plus sign) below the account list. A dialog window appears, allowing you to supply user details.
Creating a new account
Creating a new account
Figure 4.3. Creating a new account

Take the following steps to create an account:
  1. Select an account type from the Account type pulldown list. Available account types are Administrator and Standard (the default option).
  2. Fill in the Full name input field to set the name associated with the account. This name will be used by the login manager, and will be displayed on the panel.
  3. Either select a suggested username from the Username pulldown list, or fill in the corresponding input field.
  4. Click the Create button to confirm the settings.
Fedora uses a user private group (UPG) scheme. The UPG scheme does not add or change anything in the standard UNIX way of handling groups; it offers a new convention. Whenever you create a new user, a unique group with the same name as the user is created.
When a new account is created, default configuration files are copied from the /etc/skel/ directory into the new home directory.

4.2.3. Removing a User

To remove a user, make sure the configuration tool is unlocked, select the desired account from the account list, and click the button (that is, the minus sign) below the account list. A dialog window appears, allowing you to confirm or cancel the change.
Removing an account
Removing an account
Figure 4.4. Removing an account

To delete files and directories that belong to the user (that is, the home directory, mail spool, and temporary files), click the Delete Files button. To keep these files intact and only delete the user account, click Keep Files. To abort the deletion, click Cancel.

4.3. Using the User Manager Tool

The User Manager application allows you to view, modify, add, and delete local users and groups in the graphical user interface. To start the application, either select ApplicationsOtherUsers and Groups from the Activities menu, or type system-config-users at a shell prompt. Note that unless you have superuser privileges, the application will prompt you to authenticate as root.

4.3.1. Viewing Users and Groups

The main window of the User Manager is divided into two tabs: The Users tab provides a list of local users along with additional information about their user ID, primary group, home directory, login shell, and full name. The Groups tab provides a list of local groups with information about their group ID and group members.
Viewing users and groups
Viewing users and groups
Figure 4.5. Viewing users and groups

To find a specific user or group, type the first few letters of the name in the Search filter field and either press Enter, or click the Apply filter button. You can also sort the items according to any of the available columns by clicking the column header.
Fedora reserves user and group IDs below 1000 for system users and groups. By default, the User Manager does not display the system users. To view all users and groups, select EditPreferences to open the Preferences dialog box, and clear the Hide system users and groups check box.

4.3.2. Adding a New User

To add a new user, click the Add User button. A window as shown in Figure 4.6, “Adding a new user” appears.
Adding a new user
Adding a new user
Figure 4.6. Adding a new user

The Add New User dialog box allows you to provide information about the newly created user. In order to create a user, enter the username and full name in the appropriate fields and then type the user's password in the Password and Confirm Password fields. The password must be at least six characters long.

Password security advice

It is advisable to use a much longer password, as this makes it more difficult for an intruder to guess it and access the account without permission. It is also recommended that the password not be based on a dictionary term: use a combination of letters, numbers and special characters.
The Login Shell pulldown list allows you to select a login shell for the user. If you are not sure which shell to select, accept the default value of /bin/bash.
By default, the User Manager application creates the home directory for a new user in /home/username/. You can choose not to create the home directory by clearing the Create home directory check box, or change this directory by editing the content of the Home Directory text box. Note that when the home directory is created, default configuration files are copied into it from the /etc/skel/ directory.
Fedora uses a user private group (UPG) scheme. Whenever you create a new user, a unique group with the same name as the user is created by default. If you do not want to create this group, clear the Create a private group for the user check box.
To specify a user ID for the user, select Specify user ID manually. If the option is not selected, the next available user ID above 1000 is assigned to the new user. Because Fedora reserves user IDs below 1000 for system users, it is not advisable to manually assign user IDs 1–999.
Clicking the OK button creates the new user. To configure more advanced user properties, such as password expiration, modify the user's properties after adding the user.

4.3.3. Adding a New Group

To add a new user group, select Add Group from the toolbar. A window similar to Figure 4.7, “New Group” appears. Type the name of the new group. To specify a group ID for the new group, select Specify group ID manually and select the GID. Note that Fedora also reserves group IDs lower than 1000 for system groups.
New Group
Creating a new group
Figure 4.7. New Group

Click OK to create the group. The new group appears in the group list.

4.3.4. Modifying User Properties

To view the properties of an existing user, click on the Users tab, select the user from the user list, and click Properties from the menu (or choose FileProperties from the pulldown menu). A window similar to Figure 4.8, “User Properties” appears.
User Properties
Modifying user properties
Figure 4.8. User Properties

The User Properties window is divided into multiple tabbed pages:
  • User Data — Shows the basic user information configured when you added the user. Use this tab to change the user's full name, password, home directory, or login shell.
  • Account Info — Select Enable account expiration if you want the account to expire on a certain date. Enter the date in the provided fields. Select Local password is locked to lock the user account and prevent the user from logging into the system.
  • Password Info — Displays the date that the user's password last changed. To force the user to change passwords after a certain number of days, select Enable password expiration and enter a desired value in the Days before change required: field. The number of days before the user's password expires, the number of days before the user is warned to change passwords, and days before the account becomes inactive can also be changed.
  • Groups — Allows you to view and configure the Primary Group of the user, as well as other groups that you want the user to be a member of.

4.3.5. Modifying Group Properties

To view the properties of an existing group, select the group from the group list and click Properties from the menu (or choose FileProperties from the pulldown menu). A window similar to Figure 4.9, “Group Properties” appears.
Group Properties
Modifying group properties
Figure 4.9. Group Properties

The Group Users tab displays which users are members of the group. Use this tab to add or remove users from the group. Click OK to save your changes.

4.4. Using Command Line Tools

The easiest say to manage users and groups on Fedora is to use the User Manager application as described in Section 4.3, “Using the User Manager Tool”. However, if you prefer command line tools or do not have the X Window System installed, you can use command line utilities that are listed in Table 4.1, “Command line utilities for managing users and groups”.
Table 4.1. Command line utilities for managing users and groups
Utilities Description
useradd, usermod, userdel Standard utilities for adding, modifying, and deleting user accounts.
groupadd, groupmod, groupdel Standard utilities for adding, modifying, and deleting groups.
gpasswd Standard utility for administering the /etc/group configuration file.
pwck, grpck Utilities that can be used for verification of the password, group, and associated shadow files.
pwconv, pwunconv Utilities that can be used for the conversion of passwords to shadow passwords, or back from shadow passwords to standard passwords.

4.4.1. Adding a New User

To add a new user to the system, typing the following at a shell prompt as root:
useradd [options] username
…where options are command line options as described in Table 4.2, “useradd command line options”.
By default, the useradd command creates a locked user account. To unlock the account, run the following command as root to assign a password:
passwd username
Optionally, you can set password aging policy. Refer to Section 4.4.3, “Enabling Password Aging” for information on how to enable password aging.
Table 4.2. useradd command line options
Option Description
-c 'comment' comment can be replaced with any string. This option is generally used to specify the full name of a user.
-d home_directory Home directory to be used instead of default /home/username/.
-e date Date for the account to be disabled in the format YYYY-MM-DD.
-f days Number of days after the password expires until the account is disabled. If 0 is specified, the account is disabled immediately after the password expires. If -1 is specified, the account is not be disabled after the password expires.
-g group_name Group name or group number for the user's default group. The group must exist prior to being specified here.
-G group_list List of additional (other than default) group names or group numbers, separated by commas, of which the user is a member. The groups must exist prior to being specified here.
-m Create the home directory if it does not exist.
-M Do not create the home directory.
-N Do not create a user private group for the user.
-p password The password encrypted with crypt.
-r Create a system account with a UID less than 1000 and without a home directory.
-s User's login shell, which defaults to /bin/bash.
-u uid User ID for the user, which must be unique and greater than 999.

Explaining the Process

The following steps illustrate what happens if the command useradd juan is issued on a system that has shadow passwords enabled:
  1. A new line for juan is created in /etc/passwd:
    juan:x:501:501::/home/juan:/bin/bash
    The line has the following characteristics:
    • It begins with the username juan.
    • There is an x for the password field indicating that the system is using shadow passwords.
    • A UID greater than 999 is created. Under Fedora, UIDs below 1000 are reserved for system use and should not be assigned to users.
    • A GID greater than 999 is created. Under Fedora, GIDs below 1000 are reserved for system use and should not be assigned to users.
    • The optional GECOS information is left blank.
    • The home directory for juan is set to /home/juan/.
    • The default shell is set to /bin/bash.
  2. A new line for juan is created in /etc/shadow:
    juan:!!:14798:0:99999:7:::
    The line has the following characteristics:
    • It begins with the username juan.
    • Two exclamation marks (!!) appear in the password field of the /etc/shadow file, which locks the account.

      Note

      If an encrypted password is passed using the -p flag, it is placed in the /etc/shadow file on the new line for the user.
    • The password is set to never expire.
  3. A new line for a group named juan is created in /etc/group:
    juan:x:501:
    A group with the same name as a user is called a user private group. For more information on user private groups, refer to Section 4.1.1, “User Private Groups”.
    The line created in /etc/group has the following characteristics:
    • It begins with the group name juan.
    • An x appears in the password field indicating that the system is using shadow group passwords.
    • The GID matches the one listed for user juan in /etc/passwd.
  4. A new line for a group named juan is created in /etc/gshadow:
    juan:!::
    The line has the following characteristics:
    • It begins with the group name juan.
    • An exclamation mark (!) appears in the password field of the /etc/gshadow file, which locks the group.
    • All other fields are blank.
  5. A directory for user juan is created in the /home/ directory:
    ~]# ls -l /home
    total 4
    drwx------. 4 juan juan 4096 Mar  3 18:23 juan
    This directory is owned by user juan and group juan. It has read, write, and execute privileges only for the user juan. All other permissions are denied.
  6. The files within the /etc/skel/ directory (which contain default user settings) are copied into the new /home/juan/ directory. The contents of /etc/skel/ may vary depending on installed applications.
    ~]# ls -la /home/juan
    total 28
    drwx------. 4 juan juan 4096 Mar  3 18:23 .
    drwxr-xr-x. 5 root root 4096 Mar  3 18:23 ..
    -rw-r--r--. 1 juan juan   18 Jul 09 08:43 .bash_logout
    -rw-r--r--. 1 juan juan  176 Jul 09 08:43  .bash_profile
    -rw-r--r--. 1 juan juan  124 Jul 09 08:43  .bashrc
    drwxr-xr-x. 4 juan juan 4096 Jul 09 08:43  .mozilla
    -rw-r--r--. 1 juan juan  658 Jul 09 08:43  .zshrc
At this point, a locked account called juan exists on the system. To activate it, the administrator must next assign a password to the account using the passwd command and, optionally, set password aging guidelines.

4.4.2. Adding a New Group

To add a new group to the system, type the following at a shell prompt as root:
groupadd [options] group_name
…where options are command line options as described in Table 4.3, “groupadd command line options”.
Table 4.3. groupadd command line options
Option Description
-f, --force When used with -g gid and gid already exists, groupadd will choose another unique gid for the group.
-g gid Group ID for the group, which must be unique and greater than 999.
-K, --key key=value Override /etc/login.defs defaults.
-o, --non-unique Allow to create groups with duplicate.
-p, --password password Use this encrypted password for the new group.
-r Create a system group with a GID less than 1000.

4.4.3. Enabling Password Aging

For security reasons, it is advisable to require users to change their passwords periodically. This can either be done when adding or editing a user on the Password Info tab of the User Manager application, or by using the chage command.

Shadow passwords must be enabled to use chage

Shadow passwords must be enabled to use the chage command. For more information, see Section 4.1.2, “Shadow Passwords”.
To configure password expiration for a user from a shell prompt, run the following command as root:
chage [options] username
…where options are command line options as described in Table 4.4, “chage command line options”. When the chage command is followed directly by a username (that is, when no command line options are specified), it displays the current password aging values and allows you to change them interactively.
Table 4.4. chage command line options
Option Description
-d days Specifies the number of days since January 1, 1970 the password was changed.
-E date Specifies the date on which the account is locked, in the format YYYY-MM-DD. Instead of the date, the number of days since January 1, 1970 can also be used.
-I days Specifies the number of inactive days after the password expiration before locking the account. If the value is 0, the account is not locked after the password expires.
-l Lists current account aging settings.
-m days Specify the minimum number of days after which the user must change passwords. If the value is 0, the password does not expire.
-M days Specify the maximum number of days for which the password is valid. When the number of days specified by this option plus the number of days specified with the -d option is less than the current day, the user must change passwords before using the account.
-W days Specifies the number of days before the password expiration date to warn the user.

You can configure a password to expire the first time a user logs in. This forces users to change passwords immediately.
  1. Set up an initial password. There are two common approaches to this step: you can either assign a default password, or you can use a null password.
    To assign a default password, type the following at a shell prompt as root:
    passwd username
    To assign a null password instead, use the following command:
    passwd -d username

    Avoid using null passwords whenever possible

    Using a null password, while convenient, is a highly insecure practice, as any third party can log in first and access the system using the insecure username. Always make sure that the user is ready to log in before unlocking an account with a null password.
  2. Force immediate password expiration by running the following command as root:
    chage -d 0 username
    This command sets the value for the date the password was last changed to the epoch (January 1, 1970). This value forces immediate password expiration no matter what password aging policy, if any, is in place.
Upon the initial log in, the user is now prompted for a new password.

4.4.4. Enabling Automatic Logouts

Especially when the user is logged in as root, an unattended login session may pose a significant security risk. To reduce this risk, you can configure the system to automatically log out idle users after a fixed period of time:
  1. Make sure the screen package is installed. You can do so by running the following command as root:
    yum install screen
    For more information on how to install packages in Fedora, refer to Section 5.2.4, “Installing Packages”.
  2. As root, add the following line at the beginning of the /etc/profile file to make sure the processing of this file cannot be interrupted:
    trap "" 1 2 3 15
  3. Add the following lines at the end of the /etc/profile file to start a screen session each time a user logs in to a virtual console or remotely:
    SCREENEXEC="screen"
    if [ -w $(tty) ]; then
      trap "exec $SCREENEXEC" 1 2 3 15
      echo -n 'Starting session in 10 seconds'
      sleep 10
      exec $SCREENEXEC
    fi
    Note that each time a new session starts, a message will be displayed and the user will have to wait ten seconds. To adjust the time to wait before starting a session, change the value after the sleep command.
  4. Add the following lines to the /etc/screenrc configuration file to close the screen session after a given period of inactivity:
    idle 120 quit
    autodetach off
    This will set the time limit to 120 seconds. To adjust this limit, change the value after the idle directive.
    Alternatively, you can configure the system to only lock the session by using the following lines instead:
    idle 120 lockscreen
    autodetach off
    This way, a password will be required to unlock the session.
The changes take effect the next time a user logs in to the system.

4.4.5. Creating Group Directories

System administrators usually like to create a group for each major project and assign people to the group when they need to access that project's files. With this traditional scheme, file managing is difficult; when someone creates a file, it is associated with the primary group to which they belong. When a single person works on multiple projects, it becomes difficult to associate the right files with the right group. However, with the UPG scheme, groups are automatically assigned to files created within a directory with the setgid bit set. The setgid bit makes managing group projects that share a common directory very simple because any files a user creates within the directory are owned by the group which owns the directory.
For example, a group of people need to work on files in the /opt/myproject/ directory. Some people are trusted to modify the contents of this directory, but not everyone.
  1. As root, create the /opt/myproject/ directory by typing the following at a shell prompt:
    mkdir /opt/myproject
  2. Add the myproject group to the system:
    groupadd myproject
  3. Associate the contents of the /opt/myproject/ directory with the myproject group:
    chown root:myproject /opt/myproject
  4. Allow users to create files within the directory, and set the setgid bit:
    chmod 2775 /opt/myproject
At this point, all members of the myproject group can create and edit files in the /opt/myproject/ directory without the administrator having to change file permissions every time users write new files. To verify that the permissions have been set correctly, run the following command:
~]# ls -l /opt
total 4
drwxrwsr-x. 3 root myproject 4096 Mar  3 18:31 myproject

4.5. Additional Resources

Refer to the following resources for more information about managing users and groups.

4.5.1. Installed Documentation

For information about various utilities for managing users and groups, refer to the following manual pages:
  • chage(1) — A command to modify password aging policies and account expiration.
  • gpasswd(1) — A command to administer the /etc/group file.
  • groupadd(8) — A command to add groups.
  • grpck(8) — A command to verify the /etc/group file.
  • groupdel(8) — A command to remove groups.
  • groupmod(8) — A command to modify group membership.
  • pwck(8) — A command to verify the /etc/passwd and /etc/shadow files.
  • pwconv(8) — A tool to convert standard passwords to shadow passwords.
  • pwunconv(8) — A tool to convert shadow passwords to standard passwords.
  • useradd(8) — A command to add users.
  • userdel(8) — A command to remove users.
  • usermod(8) — A command to modify users.
For information about related configuration files, see:
  • group(5) — The file containing group information for the system.
  • passwd(5) — The file containing user information for the system.
  • shadow(5) — The file containing passwords and account expiration information for the system.

Part II. Package Management

Chapter 5. Yum

Yum is the The Fedora Project package manager that is able to query for information about packages, fetch packages from repositories, install and uninstall packages using automatic dependency resolution, and update an entire system to the latest available packages. Yum performs automatic dependency resolution on packages you are updating, installing or removing, and thus is able to automatically determine, fetch and install all available dependent packages. Yum can be configured with new, additional repositories, or package sources, and also provides many plug-ins which enhance and extend its capabilities. Yum is able to perform many of the same tasks that RPM can; additionally, many of the command line options are similar. Yum enables easy and simple package management on a single machine or on groups of them.

Secure package management with GPG-signed packages

Yum provides secure package management by enabling GPG (Gnu Privacy Guard; also known as GnuPG) signature verification on GPG-signed packages to be turned on for all package repositories (i.e. package sources), or for individual repositories. When signature verification is enabled, Yum will refuse to install any packages not GPG-signed with the correct key for that repository. This means that you can trust that the RPM packages you download and install on your system are from a trusted source, such as The Fedora Project, and were not modified during transfer. Refer to Section 5.3, “Configuring Yum and Yum Repositories” for details on enabling signature-checking with Yum, or Section A.3, “Checking a Package's Signature” for information on working with and verifying GPG-signed RPM packages in general.
Yum also enables you to easily set up your own repositories of RPM packages for download and installation on other machines.
Learning Yum is a worthwhile investment because it is often the fastest way to perform system administration tasks, and it provides capabilities beyond those provided by the PackageKit graphical package management tools. Refer to Chapter 6, PackageKit for details on using PackageKit.

Yum and superuser privileges

You must have superuser privileges in order to use yum to install, update or remove packages on your system. All examples in this chapter assume that you have already obtained superuser privileges by using either the su or sudo command.

5.1. Checking For and Updating Packages

5.1.1. Checking For Updates

To see which installed packages on your system have updates available, use the following command:
yum check-update
For example:
~]# yum check-update
Loaded plugins: langpacks, presto, refresh-packagekit

PackageKit.x86_64                    0.6.14-2.fc15                 fedora
PackageKit-command-not-found.x86_64  0.6.14-2.fc15                 fedora
PackageKit-device-rebind.x86_64      0.6.14-2.fc15                 fedora
PackageKit-glib.x86_64               0.6.14-2.fc15                 fedora
PackageKit-gstreamer-plugin.x86_64   0.6.14-2.fc15                 fedora
PackageKit-gtk-module.x86_64         0.6.14-2.fc15                 fedora
PackageKit-gtk3-module.x86_64        0.6.14-2.fc15                 fedora
PackageKit-yum.x86_64                0.6.14-2.fc15                 fedora
PackageKit-yum-plugin.x86_64         0.6.14-2.fc15                 fedora
gdb.x86_64                           7.2.90.20110429-36.fc15       fedora
kernel.x86_64                        2.6.38.6-26.fc15              fedora
rpm.x86_64                           4.9.0-6.fc15                  fedora
rpm-libs.x86_64                      4.9.0-6.fc15                  fedora
rpm-python.x86_64                    4.9.0-6.fc15                  fedora
yum.noarch                           3.2.29-5.fc15                 fedora
The packages in the above output are listed as having updates available. The first package in the list is PackageKit, the graphical package manager. The line in the example output tells us:
  • PackageKit — the name of the package
  • x86_64 — the CPU architecture the package was built for
  • 0.6.14 — the version of the updated package to be installed
  • fedora — the repository in which the updated package is located
The output also shows us that we can update the kernel (the kernel package), Yum and RPM themselves (the yum and rpm packages), as well as their dependencies (such as the kernel-firmware, rpm-libs, and rpm-python packages), all using yum.

5.1.2. Updating Packages

You can choose to update a single package, multiple packages, or all packages at once. If any dependencies of the package (or packages) you update have updates available themselves, then they are updated too.

Updating a Single Package

To update a single package, run the following command as root:
yum update package_name
For example, to update the udev package, type:
~]# yum update udev
Loaded plugins: langpacks, presto, refresh-packagekit
Updating Red Hat repositories.
INFO:rhsm-app.repolib:repos updated: 0
Setting up Update Process
Resolving Dependencies
--> Running transaction check
---> Package gdb.x86_64 0:7.2.90.20110411-34.fc15 will be updated
---> Package gdb.x86_64 0:7.2.90.20110429-36.fc15 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

================================================================================
 Package     Arch         Version                          Repository      Size
================================================================================
Updating:
 gdb         x86_64       7.2.90.20110429-36.fc15          fedora         1.9 M

Transaction Summary
================================================================================
Upgrade       1 Package(s)

Total download size: 1.9 M
Is this ok [y/N]:
This output contains several items of interest:
  1. Loaded plugins:yum always informs you which Yum plug-ins are installed and enabled. Here, yum is using the langpacks, presto, and refresh-packagekit plug-ins. Refer to Section 5.4, “Yum Plug-ins” for general information on Yum plug-ins, or to Section 5.4.3, “Plug-in Descriptions” for descriptions of specific plug-ins.
  2. gdb.x86_64 — you can download and install new gdb package.
  3. yum presents the update information and then prompts you as to whether you want it to perform the update; yum runs interactively by default. If you already know which transactions yum plans to perform, you can use the -y option to automatically answer yes to any questions yum may ask (in which case it runs non-interactively). However, you should always examine which changes yum plans to make to the system so that you can easily troubleshoot any problems that might arise.
    If a transaction does go awry, you can view Yum's transaction history by using the yum history command as described in Section 5.2.6, “Working with Transaction History”.

Updating and installing kernels with Yum

yum always installs a new kernel in the same sense that RPM installs a new kernel when you use the command rpm -i kernel. Therefore, you do not need to worry about the distinction between installing and upgrading a kernel package when you use yum: it will do the right thing, regardless of whether you are using the yum update or yum install command.
When using RPM, on the other hand, it is important to use the rpm -i kernel command (which installs a new kernel) instead of rpm -u kernel (which replaces the current kernel). Refer to Section A.2.2, “Installing and Upgrading” for more information on installing/updating kernels with RPM.

Updating All Packages and Their Dependencies

To update all packages and their dependencies, simply enter yum update (without any arguments):
yum update
Discovering which packages have security updates available and then updating those packages quickly and easily is important. Yum provides the plug-in for this purpose. The security plug-in extends the yum command with a set of highly-useful security-centric commands, subcommands and options. Refer to Section 5.4.3, “Plug-in Descriptions” for specific information.

5.1.3. Preserving Configuration File Changes

You will inevitably make changes to the configuration files installed by packages as you use your Fedora system. RPM, which Yum uses to perform changes to the system, provides a mechanism for ensuring their integrity. Refer to Section A.2.2, “Installing and Upgrading” for details on how to manage changes to configuration files across package upgrades.

5.2. Packages and Package Groups

5.2.1. Searching Packages

You can search all RPM package names, descriptions and summaries by using the following command:
yum search term
This command displays the list of matches for each term. For example, to list all packages that match meld or kompare, type:
~]# yum search meld kompare
Loaded plugins: langpacks, presto, refresh-packagekit
============================== N/S Matched: meld ===============================
meld.noarch : Visual diff and merge tool
python-meld3.x86_64 : HTML/XML templating system for Python

============================= N/S Matched: kompare =============================
komparator.x86_64 : Kompare and merge two folders

  Name and summary matches only, use "search all" for everything.
The yum search command is useful for searching for packages you do not know the name of, but for which you know a related term.

5.2.2. Listing Packages

yum list and related commands provide information about packages, package groups, and repositories.
All of Yum's list commands allow you to filter the results by appending one or more glob expressions as arguments. Glob expressions are normal strings of characters which contain one or more of the wildcard characters * (which expands to match any character multiple times) and ? (which expands to match any one character).

Filtering results with glob expressions

Be careful to escape the glob expressions when passing them as arguments to a yum command, otherwise the Bash shell will interpret these expressions as pathname expansions, and potentially pass all files in the current directory that match the globs to yum. To make sure the glob expressions are passed to yum as intended, either:
  • escape the wildcard characters by preceding them with a backslash character
  • double-quote or single-quote the entire glob expression.
yum list glob_expression
Lists information on installed and available packages matching all glob expressions.
Example 5.1. Listing all ABRT addons and plug-ins using glob expressions
Packages with various ABRT addons and plug-ins either begin with abrt-addon-, or abrt-plugin-. To list these packages, type the following at a shell prompt:
~]# yum list abrt-addon\* abrt-plugin\*
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
abrt-addon-ccpp.x86_64               2.0.2-5.fc15     @fedora
abrt-addon-kerneloops.x86_64         2.0.2-5.fc15     @fedora
abrt-addon-python.x86_64             2.0.2-5.fc15     @fedora
abrt-plugin-bugzilla.x86_64          2.0.2-5.fc15     @fedora
abrt-plugin-logger.x86_64            2.0.2-5.fc15     @fedora
Available Packages
abrt-plugin-mailx.x86_64             2.0.2-5.fc15     updates
abrt-plugin-reportuploader.x86_64    2.0.2-5.fc15     updates
abrt-plugin-rhtsupport.x86_64        2.0.2-5.fc15     updates

yum list all
Lists all installed and available packages.
Example 5.2. Listing all installed and available packages
~]# yum list all
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
ConsoleKit.x86_64                       0.4.4-1.fc15                  @fedora
ConsoleKit-libs.x86_64                  0.4.4-1.fc15                  @fedora
ConsoleKit-x11.x86_64                   0.4.4-1.fc15                  @fedora
GConf2.x86_64                           2.32.3-1.fc15                 @fedora
GConf2-gtk.x86_64                       2.32.3-1.fc15                 @fedora
ModemManager.x86_64                     0.4-7.git20110201.fc15        @fedora
NetworkManager.x86_64                   1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-glib.x86_64              1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-gnome.x86_64             1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-openconnect.x86_64       0.8.1-9.git20110419.fc15      @fedora
[output truncated]

yum list installed
Lists all packages installed on your system. The rightmost column in the output lists the repository from which the package was retrieved.
Example 5.3. Listing installed packages using a double-quoted glob expression
To list all installed packages that begin with krb followed by exactly one character and a hyphen, type:
~]# yum list installed "krb?-*"
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
krb5-libs.x86_64              1.9-7.fc15              @fedora

yum list available
Lists all available packages in all enabled repositories.
Example 5.4. Listing available packages using a single glob expression with escaped wildcard characters
To list all available packages with names that contain gstreamer and then plugin, run the following command:
~]# yum list available gstreamer\*plugin\*
Loaded plugins: langpacks, presto, refresh-packagekit
Available Packages
gstreamer-plugin-crystalhd.x86_64               3.5.1-1.fc14       fedora
gstreamer-plugins-bad-free.x86_64               0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-devel.x86_64         0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-devel-docs.x86_64    0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-extras.x86_64        0.10.22-1.fc15     updates
gstreamer-plugins-base.x86_64                   0.10.33-1.fc15     updates
gstreamer-plugins-base-devel.x86_64             0.10.33-1.fc15     updates
gstreamer-plugins-base-devel-docs.noarch        0.10.33-1.fc15     updates
gstreamer-plugins-base-tools.x86_64             0.10.33-1.fc15     updates
gstreamer-plugins-espeak.x86_64                 0.3.3-3.fc15       fedora
gstreamer-plugins-fc.x86_64                     0.2-2.fc15         fedora
gstreamer-plugins-good.x86_64                   0.10.29-1.fc15     updates
gstreamer-plugins-good-devel-docs.noarch        0.10.29-1.fc15     updates

yum grouplist
Lists all package groups.
Example 5.5. Listing all package groups
~]# yum grouplist
Loaded plugins: langpacks, presto, refresh-packagekit
Setting up Group Process
Installed Groups:
   Administration Tools
   Design Suite
   Dial-up Networking Support
   Fonts
   GNOME Desktop Environment
[output truncated]

yum repolist
Lists the repository ID, name, and number of packages it provides for each enabled repository.
Example 5.6. Listing enabled repositories
~]# yum repolist
Loaded plugins: langpacks, presto, refresh-packagekit
repo id                      repo name                                    status
fedora                       Fedora 15 - i386                             19,365
updates                      Fedora 15 - i386 - Updates                   3,848
repolist: 23,213

5.2.3. Displaying Package Information

To display information about one or more packages (glob expressions are valid here as well), use the following command:
yum info package_name
For example, to display information about the abrt package, type:
~]# yum info abrt
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
Name        : abrt
Arch        : x86_64
Version     : 2.0.1
Release     : 2.fc15
Size        : 806 k
Repo        : installed
From repo   : fedora
Summary     : Automatic bug detection and reporting tool
URL         : https://fedorahosted.org/abrt/
License     : GPLv2+
Description : abrt is a tool to help users to detect defects in applications and
            : to create a bug report with all informations needed by maintainer
            : to fix it. It uses plugin system to extend its functionality.
The yum info package_name command is similar to the rpm -q --info package_name command, but provides as additional information the ID of the Yum repository the RPM package is found in (look for the From repo: line in the output).
You can also query the Yum database for alternative and useful information about a package by using the following command:
yumdb info package_name
This command provides additional information about a package, including the checksum of the package (and algorithm used to produce it, such as SHA-256), the command given on the command line that was invoked to install the package (if any), and the reason that the package is installed on the system (where user indicates it was installed by the user, and dep means it was brought in as a dependency). For example, to display additional information about the yum package, type:
~]# yumdb info yum
Loaded plugins: langpacks, presto, refresh-packagekit
yum-3.2.29-4.fc15.noarch
     checksum_data = 249f21fb43c41381c8c9b0cd98d2ea5fa0aa165e81ed2009cfda74c05af67246
     checksum_type = sha256
     from_repo = fedora
     from_repo_revision = 1304429533
     from_repo_timestamp = 1304442346
     installed_by = 0
     reason = user
     releasever = $releasever
For more information on the yumdb command, refer to the yumdb(8) manual page.

5.2.4. Installing Packages

Yum allows you to install both a single package and multiple packages, as well as a package group of your choice.

Installing Individual Packages

To install a single package and all of its non-installed dependencies, enter a command in the following form:
yum install package_name
You can also install multiple packages simultaneously by appending their names as arguments:
yum install package_name package_name
If you are installing packages on a multilib system, such as an AMD64 or Intel64 machine, you can specify the architecture of the package (as long as it is available in an enabled repository) by appending .arch to the package name. For example, to install the sqlite2 package for i586, type:
~]# yum install sqlite2.i586
You can use glob expressions to quickly install multiple similarly-named packages:
~]# yum install audacious-plugins-\*
In addition to package names and glob expressions, you can also provide file names to yum install. If you know the name of the binary you want to install, but not its package name, you can give yum install the path name:
~]# yum install /usr/sbin/named
yum then searches through its package lists, finds the package which provides /usr/sbin/named, if any, and prompts you as to whether you want to install it.

Finding which package owns a file

If you know you want to install the package that contains the named binary, but you do not know in which bin or sbin directory is the file installed, use the yum provides command with a glob expression:
~]# yum provides "*bin/named"
Loaded plugins: langpacks, presto, refresh-packagekit
32:bind-9.8.0-3.P1.fc15.i686 : The Berkeley Internet Name Domain (BIND) DNS
                             : (Domain Name System) server
Repo        : fedora
Matched from:
Filename    : /usr/sbin/named
yum provides "*/file_name" is a common and useful trick to find the packages that contain file_name.

Installing a Package Group

A package group is similar to a package: it is not useful by itself, but installing one pulls a group of dependent packages that serve a common purpose. A package group has a name and a groupid. The yum grouplist -v command lists the names of all package groups, and, next to each of them, their groupid in parentheses. The groupid is always the term in the last pair of parentheses, such as kde-desktop in the following example:
~]# yum -v grouplist kde\*
Not loading "blacklist" plugin, as it is disabled
Loading "langpacks" plugin
Loading "presto" plugin
Loading "refresh-packagekit" plugin
Not loading "whiteout" plugin, as it is disabled
Adding en_US to language list
Config time: 0.900
Yum Version: 3.2.29
Setting up Group Process
rpmdb time: 0.002
group time: 0.995
Available Groups:
   KDE Software Compilation (kde-desktop)
   KDE Software Development (kde-software-development)
Done
You can install a package group by passing its full group name (without the groupid part) to groupinstall:
yum groupinstall group_name
You can also install by groupid:
yum groupinstall groupid
You can even pass the groupid (or quoted name) to the install command if you prepend it with an @-symbol (which tells yum that you want to perform a groupinstall):
yum install @group
For example, the following are alternative but equivalent ways of installing the KDE Desktop group:
~]# yum groupinstall "KDE Desktop"
~]# yum groupinstall kde-desktop
~]# yum install @kde-desktop

5.2.5. Removing Packages

Similarly to package installation, Yum allows you to uninstall (remove in RPM and Yum terminology) both individual packages and a package group.

Removing Individual Packages

To uninstall a particular package, as well as any packages that depend on it, run the following command as root:
yum remove package_name
As when you install multiple packages, you can remove several at once by adding more package names to the command. For example, to remove totem, rhythmbox, and sound-juicer, type the following at a shell prompt:
~]# yum remove totem rhythmbox sound-juicer
Similar to install, remove can take these arguments:
  • package names
  • glob expressions
  • file lists
  • package provides

Removing a package when other packages depend on it

Yum is not able to remove a package without also removing packages which depend on it. This type of operation can only be performed by RPM, is not advised, and can potentially leave your system in a non-functioning state or cause applications to misbehave and/or crash. For further information, refer to Section A.2.4, “Uninstalling” in the RPM chapter.

Removing a Package Group

You can remove a package group using syntax congruent with the install syntax:
yum groupremove group
yum remove @group
The following are alternative but equivalent ways of removing the KDE Desktop group:
~]# yum groupremove "KDE Desktop"
~]# yum groupremove kde-desktop
~]# yum remove @kde-desktop

Intelligent package group removal

When you tell yum to remove a package group, it will remove every package in that group, even if those packages are members of other package groups or dependencies of other installed packages. However, you can instruct yum to remove only those packages which are not required by any other packages or groups by adding the groupremove_leaf_only=1 directive to the [main] section of the /etc/yum.conf configuration file. For more information on this directive, refer to Section 5.3.1, “Setting [main] Options”.

5.2.6. Working with Transaction History

The yum history command allows users to review information about a timeline of Yum transactions, the dates and times on when they occurred, the number of packages affected, whether transactions succeeded or were aborted, and if the RPM database was changed between transactions. Additionally, this command can be used to undo or redo certain transactions.

Listing Transactions

To display a list of twenty most recent transactions, as root, either run yum history with no additional arguments, or type the following at a shell prompt:
yum history list
To display all transactions, add the all keyword:
yum history list all
To display only transactions in a given range, use the command in the following form:
yum history list start_id..end_id
You can also list only transactions regarding a particular package or packages. To do so, use the command with a package name or a glob expression:
yum history list glob_expression
For example, the list of first five transactions may look as follows:
~]# yum history list 1..5
Loaded plugins: langpacks, presto, refresh-packagekit
ID     | Login user               | Date and time    | Action(s)      | Altered
-------------------------------------------------------------------------------
     5 | Jaromir ... <jhradilek>  | 2011-07-29 15:33 | Install        |    1
     4 | Jaromir ... <jhradilek>  | 2011-07-21 15:10 | Install        |    1
     3 | Jaromir ... <jhradilek>  | 2011-07-16 15:27 | I, U           |   73
     2 | System <unset>           | 2011-07-16 15:19 | Update         |    1
     1 | System <unset>           | 2011-07-16 14:38 | Install        | 1106
history list
All forms of the yum history list command produce tabular output with each row consisting of the following columns:
  • ID — an integer value that identifies a particular transaction.
  • Login user — the name of the user whose login session was used to initiate a transaction. This information is typically presented in the Full Name <username> form. For transactions that were not issued by a user (such as an automatic system update), System <unset> is used instead.
  • Date and time — the date and time when a transaction was issued.
  • Action(s) — a list of actions that were performed during a transaction as described in Table 5.1, “Possible values of the Action(s) field”.
  • Altered — the number of packages that were affected by a transaction, possibly followed by additional information as described in Table 5.2, “Possible values of the Altered field”.
Table 5.1. Possible values of the Action(s) field
Action Abbreviation Description
Downgrade D At least one package has been downgraded to an older version.
Erase E At least one package has been removed.
Install I At least one new package has been installed.
Obsoleting O At least one package has been marked as obsolete.
Reinstall R At least one package has been reinstalled.
Update U At least one package has been updated to a newer version.

Table 5.2. Possible values of the Altered field
Symbol Description
< Before the transaction finished, the rpmdb database was changed outside Yum.
> After the transaction finished, the rpmdb database was changed outside Yum.
* The transaction failed to finish.
# The transaction finished successfully, but yum returned a non-zero exit code.
E The transaction finished successfully, but an error or a warning was displayed.
P The transaction finished successfully, but problems already existed in the rpmdb database.
s The transaction finished successfully, but the --skip-broken command line option was used and certain packages were skipped.

Yum also allows you to display a summary of all past transactions. To do so, run the command in the following form as root:
yum history summary
To display only transactions in a given range, type:
yum history summary start_id..end_id
Similarly to the yum history list command, you can also display a summary of transactions regarding a certain package or packages by supplying a package name or a glob expression:
yum history summary glob_expression
For instance, a summary of the transaction history displayed above would look like the following:
~]# yum history summary 1..5
Loaded plugins: langpacks, presto, refresh-packagekit
Login user                 | Time                | Action(s)        | Altered 
-------------------------------------------------------------------------------
Jaromir ... <jhradilek>    | Last day            | Install          |        1
Jaromir ... <jhradilek>    | Last week           | Install          |        1
Jaromir ... <jhradilek>    | Last 2 weeks        | I, U             |       73
System <unset>             | Last 2 weeks        | I, U             |     1107
history summary
All forms of the yum history summary command produce simplified tabular output similar to the output of yum history list.
As shown above, both yum history list and yum history summary are oriented towards transactions, and although they allow you to display only transactions related to a given package or packages, they lack important details, such as package versions. To list transactions from the perspective of a package, run the following command as root:
yum history package-list glob_expression
For example, to trace the history of subscription-manager and related packages, type the following at a shell prompt:
~]# yum history package-list subscription-manager\*
Loaded plugins: langpacks, presto, refresh-packagekit
ID     | Action(s)      | Package
-------------------------------------------------------------------------------
     3 | Updated        | subscription-manager-0.95.11-1.el6.x86_64
     3 | Update         |                      0.95.17-1.el6_1.x86_64
     3 | Updated        | subscription-manager-firstboot-0.95.11-1.el6.x86_64
     3 | Update         |                                0.95.17-1.el6_1.x86_64
     3 | Updated        | subscription-manager-gnome-0.95.11-1.el6.x86_64
     3 | Update         |                            0.95.17-1.el6_1.x86_64
     1 | Install        | subscription-manager-0.95.11-1.el6.x86_64
     1 | Install        | subscription-manager-firstboot-0.95.11-1.el6.x86_64
     1 | Install        | subscription-manager-gnome-0.95.11-1.el6.x86_64
history package-list
In this example, three packages were installed during the initial system installation: subscription-manager, subscription-manager-firstboot, and subscription-manager-gnome. In the third transaction, all these packages were updated from version 0.95.11 to version 0.95.17.

Examining Transactions

To display the summary of a single transaction, as root, use the yum history summary command in the following form:
yum history summary id
To examine a particular transaction or transactions in more detail, run the following command as root:
yum history info id
The id argument is optional and when you omit it, yum automatically uses the last transaction. Note that when specifying more than one transaction, you can also use a range:
yum history info start_id..end_id
The following is sample output for two transactions, each installing one new package:
~]# yum history info 4..5
Loaded plugins: langpacks, presto, refresh-packagekit
Transaction ID : 4..5
Begin time     : Thu Jul 21 15:10:46 2011
Begin rpmdb    : 1107:0c67c32219c199f92ed8da7572b4c6df64eacd3a
End time       :            15:33:15 2011 (22 minutes)
End rpmdb      : 1109:1171025bd9b6b5f8db30d063598f590f1c1f3242
User           : Jaromir Hradilek <jhradilek>
Return-Code    : Success
Command Line   : install screen
Command Line   : install yum-plugin-fs-snapshot
Transaction performed with:
    Installed     rpm-4.8.0-16.el6.x86_64
    Installed     yum-3.2.29-17.el6.noarch
    Installed     yum-metadata-parser-1.1.2-16.el6.x86_64
Packages Altered:
    Install screen-4.0.3-16.el6.x86_64
    Install yum-plugin-fs-snapshot-1.1.30-6.el6.noarch
history info
You can also view additional information, such as what configuration options were used at the time of the transaction, or from what repository and why were certain packages installed. To determine what additional information is available for a certain transaction, type the following at a shell prompt as root:
yum history addon-info id
Similarly to yum history info, when no id is provided, yum automatically uses the latest transaction. Another way to refer to the latest transaction is to use the last keyword:
yum history addon-info last
For instance, for the first transaction in the previous example, the yum history addon-info command would provide the following output:
~]# yum history addon-info 4
Loaded plugins: langpacks, presto, refresh-packagekit
Transaction ID: 4
Available additional history information:
  config-main
  config-repos
  saved_tx

history addon-info
In this example, three types of information are available:
  • config-main — global Yum options that were in use during the transaction. Refer to Section 5.3.1, “Setting [main] Options” for information on how to change global options.
  • config-repos — options for individual Yum repositories. Refer to Section 5.3.2, “Setting [repository] Options” for information on how to change options for individual repositories.
  • saved_tx — the data that can be used by the yum load-transaction command in order to repeat the transaction on another machine (see below).
To display selected type of additional information, run the following command as root:
yum history addon-info id information

Reverting and Repeating Transactions

Apart from reviewing the transaction history, the yum history command provides means to revert or repeat a selected transaction. To revert a transaction, type the following at a shell prompt as root:
yum history undo id
To repeat a particular transaction, as root, run the following command:
yum history redo id
Both commands also accept the last keyword to undo or repeat the latest transaction.
Note that both yum history undo and yum history redo commands merely revert or repeat the steps that were performed during a transaction: if the transaction installed a new package, the yum history undo command will uninstall it, and vice versa. If possible, this command will also attempt to downgrade all updated packages to their previous version, but these older packages may no longer be available. If you need to be able to restore the system to the state before an update, consider using the fs-snapshot plug-in described in Section 5.4.3, “Plug-in Descriptions”.
When managing several identical systems, Yum also allows you to perform a transaction on one of them, store the transaction details in a file, and after a period of testing, repeat the same transaction on the remaining systems as well. To store the transaction details to a file, type the following at a shell prompt as root:
yum -q history addon-info id saved_tx > file_name
Once you copy this file to the target system, you can repeat the transaction by using the following command as root:
yum load-transaction file_name
Note, however that the rpmdb version stored in the file must by identical to the version on the target system. You can verify the rpmdb version by using the yum version nogroups command.

Starting New Transaction History

Yum stores the transaction history in a single SQLite database file. To start new transaction history, run the following command as root:
yum history new
This will create a new, empty database file in the /var/lib/yum/history/ directory. The old transaction history will be kept, but will not be accessible as long as a newer database file is present in the directory.

5.3. Configuring Yum and Yum Repositories

The configuration file for yum and related utilities is located at /etc/yum.conf. This file contains one mandatory [main] section, which allows you to set Yum options that have global effect, and may also contain one or more [repository] sections, which allow you to set repository-specific options. However, best practice is to define individual repositories in new or existing .repo files in the /etc/yum.repos.d/directory. The values you define in the [main] section of the /etc/yum.conf file may override values set in individual [repository] sections.
This section shows you how to:
  • set global Yum options by editing the [main] section of the /etc/yum.conf configuration file;
  • set options for individual repositories by editing the [repository] sections in /etc/yum.conf and .repo files in the /etc/yum.repos.d/ directory;
  • use Yum variables in /etc/yum.conf and files in the /etc/yum.repos.d/ directory so that dynamic version and architecture values are handled correctly;
  • add, enable, and disable Yum repositories on the command line; and,
  • set up your own custom Yum repository.

5.3.1. Setting [main] Options

The /etc/yum.conf configuration file contains exactly one [main] section, and while some of the key-value pairs in this section affect how yum operates, others affect how Yum treats repositories. You can add many additional options under the [main] section heading in /etc/yum.conf.
A sample /etc/yum.conf configuration file can look like this:
[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

[comments abridged]

# PUT YOUR REPOS HERE OR IN separate files named file.repo
# in /etc/yum.repos.d
The following are the most commonly-used options in the [main] section:
assumeyes=value
…where value is one of:
0yum should prompt for confirmation of critical actions it performs. This is the default.
1 — Do not prompt for confirmation of critical yum actions. If assumeyes=1 is set, yum behaves in the same way that the command line option -y does.
cachedir=directory
…where directory is an absolute path to the directory where Yum should store its cache and database files. By default, Yum's cache directory is /var/cache/yum/$basearch/$releasever.
Refer to Section 5.3.3, “Using Yum Variables” for descriptions of the $basearch and $releasever Yum variables.
debuglevel=value
…where value is an integer between 1 and 10. Setting a higher debuglevel value causes yum to display more detailed debugging output. debuglevel=0 disables debugging output, while debuglevel=2 is the default.
exactarch=value
…where value is one of:
0 — Do not take into account the exact architecture when updating packages.
1 — Consider the exact architecture when updating packages. With this setting, yum will not install an i686 package to update an i386 package already installed on the system. This is the default.
exclude=package_name [more_package_names]
This option allows you to exclude packages by keyword during installation/updates. Listing multiple packages for exclusion can be accomplished by quoting a space-delimited list of packages. Shell globs using wildcards (for example, * and ?) are allowed.
gpgcheck=value
…where value is one of:
0 — Disable GPG signature-checking on packages in all repositories, including local package installation.
1 — Enable GPG signature-checking on all packages in all repositories, including local package installation. gpgcheck=1 is the default, and thus all packages' signatures are checked.
If this option is set in the [main] section of the /etc/yum.conf file, it sets the GPG-checking rule for all repositories. However, you can also set gpgcheck=value for individual repositories instead; that is, you can enable GPG-checking on one repository while disabling it on another. Setting gpgcheck=value for an individual repository in its corresponding .repo file overrides the default if it is present in /etc/yum.conf.
For more information on GPG signature-checking, refer to Section A.3, “Checking a Package's Signature”.
groupremove_leaf_only=value
…where value is one of:
0yum should not check the dependencies of each package when removing a package group. With this setting, yum removes all packages in a package group, regardless of whether those packages are required by other packages or groups. groupremove_leaf_only=0 is the default.
1yum should check the dependencies of each package when removing a package group, and remove only those packages which are not not required by any other package or group.
For more information on removing packages, refer to Intelligent package group removal.
installonlypkgs=space separated list of packages
Here you can provide a space-separated list of packages which yum can install, but will never update. Refer to the yum.conf(5) manual page for the list of packages which are install-only by default.
If you add the installonlypkgs directive to /etc/yum.conf, you should ensure that you list all of the packages that should be install-only, including any of those listed under the installonlypkgs section of yum.conf(5). In particular, kernel packages should always be listed in installonlypkgs (as they are by default), and installonly_limit should always be set to a value greater than 2 so that a backup kernel is always available in case the default one fails to boot.
installonly_limit=value
…where value is an integer representing the maximum number of versions that can be installed simultaneously for any single package listed in the installonlypkgs directive.
The defaults for the installonlypkgs directive include several different kernel packages, so be aware that changing the value of installonly_limit will also affect the maximum number of installed versions of any single kernel package. The default value listed in /etc/yum.conf is installonly_limit=3, and it is not recommended to decrease this value, particularly below 2.
keepcache=value
…where value is one of:
0 — Do not retain the cache of headers and packages after a successful installation. This is the default.
1 — Retain the cache after a successful installation.
logfile=file_name
…where file_name is an absolute path to the file in which yum should write its logging output. By default, yum logs to /var/log/yum.log.
multilib_policy=value
…where value is one of:
best — install the best-choice architecture for this system. For example, setting multilib_policy=best on an AMD64 system causes yum to install 64-bit versions of all packages.
all — always install every possible architecture for every package. For example, with multilib_policy set to all on an AMD64 system, yum would install both the i586 and AMD64 versions of a package, if both were available.
obsoletes=value
…where value is one of:
0 — Disable yum's obsoletes processing logic when performing updates.
1 — Enable yum's obsoletes processing logic when performing updates. When one package declares in its spec file that it obsoletes another package, the latter package will be replaced by the former package when the former package is installed. Obsoletes are declared, for example, when a package is renamed. obsoletes=1 the default.
plugins=value
…where value is one of:
0 — Disable all Yum plug-ins globally.

Disabling all plug-ins is not advised

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with Yum.
1 — Enable all Yum plug-ins globally. With plugins=1, you can still disable a specific Yum plug-in by setting enabled=0 in that plug-in's configuration file.
For more information about various Yum plug-ins, refer to Section 5.4, “Yum Plug-ins”. For further information on controlling plug-ins, see Section 5.4.1, “Enabling, Configuring, and Disabling Yum Plug-ins”.
reposdir=directory
…where directory is an absolute path to the directory where .repo files are located. All .repo files contain repository information (similar to the [repository] sections of /etc/yum.conf). yum collects all repository information from .repo files and the [repository] section of the /etc/yum.conf file to create a master list of repositories to use for transactions. If reposdir is not set, yum uses the default directory /etc/yum.repos.d/.
retries=value
…where value is an integer 0 or greater. This value sets the number of times yum should attempt to retrieve a file before returning an error. Setting this to 0 makes yum retry forever. The default value is 10.
For a complete list of available [main] options, refer to the [main] OPTIONS section of the yum.conf(5) manual page.

5.3.2. Setting [repository] Options

The [repository] sections, where repository is a unique repository ID such as my_personal_repo (spaces are not permitted), allow you to define individual Yum repositories.
The following is a bare-minimum example of the form a [repository] section takes:
[repository]
name=repository_name
baseurl=repository_url
Every [repository] section must contain the following directives:
name=repository_name
…where repository_name is a human-readable string describing the repository.
baseurl=repository_url
…where repository_url is a URL to the directory where the repodata directory of a repository is located:
  • If the repository is available over HTTP, use: http://path/to/repo
  • If the repository is available over FTP, use: ftp://path/to/repo
  • If the repository is local to the machine, use: file:///path/to/local/repo
  • If a specific online repository requires basic HTTP authentication, you can specify your username and password by prepending it to the URL as username:password@link. For example, if a repository on http://www.example.com/repo/ requires a username of user and a password of password, then the baseurl link could be specified as http://user:password@www.example.com/repo/.
Usually this URL is an HTTP link, such as:
baseurl=http://path/to/repo/releases/$releasever/server/$basearch/os/
Note that Yum always expands the $releasever, $arch, and $basearch variables in URLs. For more information about Yum variables, refer to Section 5.3.3, “Using Yum Variables”.
Another useful [repository] directive is the following:
enabled=value
…where value is one of:
0 — Do not include this repository as a package source when performing updates and installs. This is an easy way of quickly turning repositories on and off, which is useful when you desire a single package from a repository that you do not want to enable for updates or installs.
1 — Include this repository as a package source.
Turning repositories on and off can also be performed by passing either the --enablerepo=repo_name or --disablerepo=repo_name option to yum, or through the Add/Remove Software window of the PackageKit utility.
Many more [repository] options exist. For a complete list, refer to the [repository] OPTIONS section of the yum.conf(5) manual page.

5.3.3. Using Yum Variables

You can use and reference the following built-in variables in yum commands and in all Yum configuration files (that is, /etc/yum.conf and all .repo files in the /etc/yum.repos.d/ directory):
$releasever
You can use this variable to reference the release version of Fedora. Yum obtains the value of $releasever from the distroverpkg=value line in the /etc/yum.conf configuration file. If there is no such line in /etc/yum.conf, then yum infers the correct value by deriving the version number from the redhat-release package.
$arch
You can use this variable to refer to the system's CPU architecture as returned when calling Python's os.uname() function. Valid values for $arch include: i586, i686 and x86_64.
$basearch
You can use $basearch to reference the base architecture of the system. For example, i686 and i586 machines both have a base architecture of i386, and AMD64 and Intel64 machines have a base architecture of x86_64.
$YUM0-9
These ten variables are each replaced with the value of any shell environment variables with the same name. If one of these variables is referenced (in /etc/yum.conf for example) and a shell environment variable with the same name does not exist, then the configuration file variable is not replaced.
To define a custom variable or to override the value of an existing one, create a file with the same name as the variable (without the $ sign) in the /etc/yum/vars/ directory, and add the desired value on its first line.
For example, repository descriptions often include the operating system name. To define a new variable called $osname, create a new file with Fedora on the first line and save it as /etc/yum/vars/osname:
~]# echo "Fedora" > /etc/yum/vars/osname
Instead of Fedora 20, you can now use the following in the .repo files:
name=$osname $releasever

5.3.4. Viewing the Current Configuration

To display the current values of global Yum options (that is, the options specified in the [main] section of the /etc/yum.conf file), run the yum-config-manager with no command line options:
yum-config-manager
To list the content of a different configuration section or sections, use the command in the following form:
yum-config-manager section
You can also use a glob expression to display the configuration of all matching sections:
yum-config-manager glob_expression
For example, to list all configuration options and their corresponding values, type the following at a shell prompt:
~]$ yum-config-manager main \*
Loaded plugins: langpacks, presto, refresh-packagekit
================================== main ===================================
[main]
alwaysprompt = True
assumeyes = False
bandwith = 0
bugtracker_url = https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%206&component=yum
cache = 0
[output truncated]

5.3.5. Adding, Enabling, and Disabling a Yum Repository

Section 5.3.2, “Setting [repository] Options” described various options you can use to define a Yum repository. This section explains how to add, enable, and disable a repository by using the yum-config-manager command.

Adding a Yum Repository

To define a new repository, you can either add a [repository] section to the /etc/yum.conf file, or to a .repo file in the /etc/yum.repos.d/ directory. All files with the .repo file extension in this directory are read by yum, and best practice is to define your repositories here instead of in /etc/yum.conf.

Be careful when using untrusted software sources

Obtaining and installing software packages from unverified or untrusted software sources constitutes a potential security risk, and could lead to security, stability, compatibility maintainability issues.
Yum repositories commonly provide their own .repo file. To add such a repository to your system and enable it, run the following command as root:
yum-config-manager --add-repo repository_url
…where repository_url is a link to the .repo file. For example, to add a repository located at http://www.example.com/example.repo, type the following at a shell prompt:
~]# yum-config-manager --add-repo http://www.example.com/example.repo
Loaded plugins: langpacks, presto, refresh-packagekit
adding repo from: http://www.example.com/example.repo
grabbing file http://www.example.com/example.repo to /etc/yum.repos.d/example.repo
example.repo                                             |  413 B     00:00
repo saved to /etc/yum.repos.d/example.repo

Enabling a Yum Repository

To enable a particular repository or repositories, type the following at a shell prompt as root:
yum-config-manager --enable repository
…where repository is the unique repository ID (use yum repolist all to list available repository IDs). Alternatively, you can use a glob expression to enable all matching repositories:
yum-config-manager --enable glob_expression
For example, to disable repositories defined in the [example], [example-debuginfo], and [example-source]sections, type:
~]# yum-config-manager --enable example\*
Loaded plugins: langpacks, presto, refresh-packagekit
============================== repo: example ==============================
[example]
bandwidth = 0
base_persistdir = /var/lib/yum/repos/x86_64/6Server
baseurl = http://www.example.com/repo/6Server/x86_64/
cache = 0
cachedir = /var/cache/yum/x86_64/6Server/example
[output truncated]
When successful, the yum-config-manager --enable command displays the current repository configuration.

Disabling a Yum Repository

To disable a Yum repository, run the following command as root:
yum-config-manager --disable repository
…where repository is the unique repository ID (use yum repolist all to list available repository IDs). Similarly to yum-config-manager --enable, you can use a glob expression to disable all matching repositories at the same time:
yum-config-manager --disable glob_expression
When successful, the yum-config-manager --disable command displays the current configuration.

5.3.6. Creating a Yum Repository

To set up a Yum repository, follow these steps:
  1. Install the createrepo package:
    ~]# yum install createrepo
  2. Copy all of the packages into one directory, such as /mnt/local_repo/.
  3. Run the createrepo --database command on that directory:
    ~]# createrepo --database /mnt/local_repo
This creates the necessary metadata for your Yum repository, as well as the sqlite database for speeding up yum operations.

5.4. Yum Plug-ins

Yum provides plug-ins that extend and enhance its operations. Certain plug-ins are installed by default. Yum always informs you which plug-ins, if any, are loaded and active whenever you call any yum command. For example:
~]# yum info yum
Loaded plugins: langpacks, presto, refresh-packagekit
[output truncated]
Note that the plug-in names which follow Loaded plugins are the names you can provide to the --disableplugins=plugin_name option.

5.4.1. Enabling, Configuring, and Disabling Yum Plug-ins

To enable Yum plug-ins, ensure that a line beginning with plugins= is present in the [main] section of /etc/yum.conf, and that its value is set to 1:
plugins=1
You can disable all plug-ins by changing this line to plugins=0.

Disabling all plug-ins is not advised

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with Yum.
Every installed plug-in has its own configuration file in the /etc/yum/pluginconf.d/ directory. You can set plug-in specific options in these files. For example, here is the refresh-packagekit plug-in's refresh-packagekit.conf configuration file:
[main]
enabled=1
Plug-in configuration files always contain a [main] section (similar to Yum's /etc/yum.conf file) in which there is (or you can place if it is missing) an enabled= option that controls whether the plug-in is enabled when you run yum commands.
If you disable all plug-ins by setting enabled=0 in /etc/yum.conf, then all plug-ins are disabled regardless of whether they are enabled in their individual configuration files.
If you merely want to disable all Yum plug-ins for a single yum command, use the --noplugins option.
If you want to disable one or more Yum plug-ins for a single yum command, add the --disableplugin=plugin_name option to the command. For example, to disable the presto plug-in while updating a system, type:
~]# yum update --disableplugin=presto
The plug-in names you provide to the --disableplugin= option are the same names listed after the Loaded plugins line in the output of any yum command. You can disable multiple plug-ins by separating their names with commas. In addition, you can match multiple plug-in names or shorten long ones by using glob expressions:
~]# yum update --disableplugin=presto,refresh-pack*

5.4.2. Installing Additional Yum Plug-ins

Yum plug-ins usually adhere to the yum-plugin-plugin_name package-naming convention, but not always: the package which provides the presto plug-in is named yum-presto, for example. You can install a Yum plug-in in the same way you install other packages. For instance, to install the security plug-in, type the following at a shell prompt:
~]# yum install yum-plugin-security

5.4.3. Plug-in Descriptions

The following list provides descriptions of a few useful Yum plug-ins:
fs-snapshot (yum-plugin-fs-snapshot)
The fs-snapshot plug-in extends Yum to create a snapshot of a file system before proceeding with a transaction such as a system update or package removal. When a user decides that the changes made by the transaction are unwanted, this mechanism allows the user to roll back to the changes that are stored in a snapshot.
In order for the plug-in to work, the root file system (that is, /) must be on an LVM (Logical Volume Manager) or Btrfs volume. To use the fs-snapshot plug-in on an LVM volume, take the following steps:
  1. Make sure that the volume group with the root file system has enough free extents. The required size is a function of the amount of changes to the original logical volume that is expected during the life of the snapshot. The reasonable default is 50–80 % of the original logical volume size.
    To display detailed information about a particular volume group, run the vgdisplay command in the following form as root:
    vgdisplay volume_group
    The number of free extents is listed on the Free PE / Size line.
  2. If the volume group with the root file system does not have enough free extents, add a new physical volume:
    1. As root, run the pvcreate command in the following form to initialize a physical volume for use with the Logical Volume Manager:
      pvcreate device
    2. Use the vgextend command in the following form as root to add the physical volume to the volume group:
      vgextend volume_group physical_volume
  3. Edit the configuration file located in /etc/yum/pluginconf.d/fs-snapshot.conf, and make the following changes to the [lvm] section:
    1. Change the value of the enabled option to 1:
      enabled = 1
    2. Remove the hash sign (that is, #) from the beginning of the lvcreate_size_args line, and adjust the number of logical extents to be allocated for a snapshot. For example, to allocate 80 % of the size of the original logical volume, use:
      lvcreate_size_args = -l 80%ORIGIN
    Refer to Table 5.3, “Supported fs-snapshot.conf directives” for a complete list of available configuration options.
  4. Run the desired yum command, and make sure fs-snapshot is included in the list of loaded plug-ins (the Loaded plugins line) before you confirm the changes and proceed with the transaction. The fs-snapshot plug-in displays a line in the following form for each affected logical volume:
    fs-snapshot: snapshotting file_system (/dev/volume_group/logical_volume): logical_volume_yum_timestamp
  5. Verify that the system is working as expected:
    • If you decide to keep the changes, remove the snapshot by running the lvremove command as root:
      lvremove /dev/volume_group/logical_volume_yum_timestamp
    • If you decide to revert the changes and restore the file system to a state that is saved in a snapshot, take the following steps:
      1. As root, run the command in the following form to merge a snapshot into its original logical volume:
        lvconvert --merge /dev/volume_group/logical_volume_yum_timestamp
        The lvconvert command will inform you that a restart is required in order for the changes to take effect.
      2. Restart the system as instructed. You can do so by typing the following at a shell prompt as root:
        reboot
To use the fs-snapshot plug-in on a Btrfs file system, take the following steps:
  1. Run the desired yum command, and make sure fs-snapshot is included in the list of loaded plug-ins (the Loaded plugins line) before you confirm the changes and proceed with the transaction. The fs-snapshot plug-in displays a line in the following form for each affected file system:
    fs-snapshot: snapshotting file_system: file_system/yum_timestamp
  2. Verify that the system is working as expected:
    • If you decide to keep the changes, you can optionally remove unwanted snapshots. To remove a Btrfs snapshot, use the command in the following form as root:
      btrfs subvolume delete file_system/yum_timestamp
    • If you decide to revert the changes and restore a file system to a state that is saved in a snapshot, take the following steps:
      1. Determine the identifier of a particular snapshot by using the following command as root:
        btrfs subvolume list file_system
      2. As root, configure the system to mount this snapshot by default:
        btrfs subvolume set-default id file_system
      3. Restart the system. You can do so by typing the following at a shell prompt as root:
        reboot
For more information on logical volume management, Btrfs, and file system snapshots, see the Fedora 20 Storage Administration Guide. For additional information about the plug-in and its configuration, refer to the yum-fs-snapshot(1) and yum-fs-snapshot.conf(5) manual pages.
Table 5.3. Supported fs-snapshot.conf directives
Section Directive Description
[main] enabled=value Allows you to enable or disable the plug-in. The value must be either 1 (enabled), or 0 (disabled). When installed, the plug-in is enabled by default.
exclude=list Allows you to exclude certain file systems. The value must be a space-separated list of mount points you do not want to snapshot (for example, /srv /mnt/backup). This option is not included in the configuration file by default.
[lvm] enabled=value Allows you to enable or disable the use of the plug-in on LVM volumes. The value must be either 1 (enabled), or 0 (disabled). This option is disabled by default.
lvcreate_size_args=value Allows you to specify the size of a logical volume snapshot. The value must be the -l or -L command line option for the lvcreate utility followed by a valid argument (for example, -l 80%ORIGIN).

presto (yum-presto)
The presto plug-in adds support to Yum for downloading delta RPM packages, during updates, from repositories which have presto metadata enabled. Delta RPMs contain only the differences between the version of the package installed on the client requesting the RPM package and the updated version in the repository.
Downloading a delta RPM is much quicker than downloading the entire updated package, and can speed up updates considerably. Once the delta RPMs are downloaded, they must be rebuilt to apply the difference to the currently-installed package and thus create the full, updated package. This process takes CPU time on the installing machine. Using delta RPMs is therefore a tradeoff between time-to-download, which depends on the network connection, and time-to-rebuild, which is CPU-bound. Using the presto plug-in is recommended for fast machines and systems with slower network connections, while slower machines on very fast connections may benefit more from downloading normal RPM packages, that is, by disabling presto.
refresh-packagekit (PackageKit-yum-plugin)
The refresh-packagekit plug-in updates metadata for PackageKit whenever yum is run. The refresh-packagekit plug-in is installed by default.
rhnplugin (yum-rhn-plugin)
The rhnplugin provides support for connecting to RHN Classic. This allows systems registered with RHN Classic to update and install packages from this system.
Refer to the rhnplugin(8) manual page for more information about the plug-in.
security (yum-plugin-security)
Discovering information about and applying security updates easily and often is important to all system administrators. For this reason Yum provides the security plug-in, which extends yum with a set of highly-useful security-related commands, subcommands and options.
You can check for security-related updates as follows:
~]# yum check-update --security
Loaded plugins: langpacks, presto, refresh-packagekit, security
Limiting package lists to security relevant ones
updates-testing/updateinfo                               | 329 kB     00:00
9 package(s) needed for security, out of 270 available

ConsoleKit.x86_64                    0.4.5-1.fc15                  updates
ConsoleKit-libs.x86_64               0.4.5-1.fc15                  updates
ConsoleKit-x11.x86_64                0.4.5-1.fc15                  updates
NetworkManager.x86_64                1:0.8.999-2.git20110509.fc15  updates
NetworkManager-glib.x86_64           1:0.8.999-2.git20110509.fc15  updates
[output truncated]
You can then use either yum update --security or yum update-minimal --security to update those packages which are affected by security advisories. Both of these commands update all packages on the system for which a security advisory has been issued. yum update-minimal --security updates them to the latest packages which were released as part of a security advisory, while yum update --security will update all packages affected by a security advisory to the latest version of that package available.
In other words, if:
  • the kernel-2.6.38.4-20 package is installed on your system;
  • the kernel-2.6.38.6-22 package was released as a security update;
  • then kernel-2.6.38.6-26 was released as a bug fix update,
...then yum update-minimal --security will update you to kernel-2.6.38.6-22, and yum update --security will update you to kernel-2.6.38.6-26. Conservative system administrators may want to use update-minimal to reduce the risk incurred by updating packages as much as possible.
Refer to the yum-security(8) manual page for usage details and further explanation of the enhancements the security plug-in adds to yum.

5.5. Additional Resources

http://yum.baseurl.org/wiki/Guides
The Yum Guides section of the Yum wiki contains more documentation.

Chapter 6. PackageKit

Fedora provides PackageKit for viewing, managing, updating, installing and uninstalling packages compatible with your system. PackageKit consists of several graphical interfaces that can be opened from the GNOME panel menu, or from the Notification Area when PackageKit alerts you that updates are available. For more information on PackageKit's architecture and available front ends, refer to Section 6.3, “PackageKit Architecture”.

6.1. Updating Packages with Software Update

You can open Software Updates by clicking ApplicationsSystem ToolsSoftware Update from the Activities menu, or running the gpk-update-viewer command at the shell prompt. In the Software Updates window, all available updates are listed along with the names of the packages being updated (minus the .rpm suffix, but including the CPU architecture), a short summary of the package, and, usually, short descriptions of the changes the update provides. Any updates you do not wish to install can be de-selected here by unchecking the checkbox corresponding to the update.
Installing updates with Software Update
installing 56 updates with PackageKit's software update window
Figure 6.1. Installing updates with Software Update

The updates presented in the Software Updates window only represent the currently-installed packages on your system for which updates are available; dependencies of those packages, whether they are existing packages on your system or new ones, are not shown until you click Install Updates.
PackageKit utilizes the fine-grained user authentication capabilities provided by the PolicyKit toolkit whenever you request it to make changes to the system. Whenever you instruct PackageKit to update, install or remove packages, you will be prompted to enter the superuser password before changes are made to the system.
If you instruct PackageKit to update the kernel package, then it will prompt you after installation, asking you whether you want to reboot the system and thereby boot into the newly-installed kernel.

6.1.1. Setting the Update-Checking Interval

Selecting ApplicationsOtherSoftware Updates from the Activities menu opens the Software Update Preferences window. The Update Settings tab allows you to define the interval at which PackageKit checks for package updates, as well as whether or not to automatically install all updates or only security updates. Leaving the Check for updates when using mobile broadband box unchecked is handy for avoiding extraneous bandwidth usage when using a wireless connection on which you are charged for the amount of data you download.
Setting PackageKit's update-checking interval
Setting the update-checking interval for PackageKit
Figure 6.2. Setting PackageKit's update-checking interval

6.1.2. Setting the Software Sources

To select which package repositories to use to install software updates, select ApplicationsOtherSoftware Updates from the Activities menu, and click the Software Sources tab of the Software Update Preferences window.
Setting PackageKit's software sources
Setting the software sources for PackageKit
Figure 6.3. Setting PackageKit's software sources

PackageKit refers to Yum repositories as software sources. It obtains all packages from enabled software sources.The Software Sources tab shows the repository name, as written on the name=My Repository Name field of all [repository] sections in the /etc/yum.conf configuration file, and in all repository.repo files in the /etc/yum.repos.d/ directory.
Entries which are checked in the Enabled column indicate that the corresponding repository will be used to locate packages to satisfy all update and installation requests (including dependency resolution). The Enabled column corresponds to the enabled=<1 or 0> field in [repository] sections. Checking an unchecked box enables the Yum repository, and unchecking it disables it. Performing either function causes PolicyKit to prompt for superuser authentication to enable or disable the repository. PackageKit actually inserts the enabled=<1 or 0> line into the correct [repository] section if it does not exist, or changes the value if it does. This means that enabling or disabling a repository through the Software Sources window causes that change to persist after closing the window or rebooting the system. The ability to quickly enable and disable repositories based on our needs is a highly-convenient feature of PackageKit.
Note that it is not possible to add or remove Yum repositories through PackageKit.

Showing source RPM, test, and debuginfo repositories

Checking the box at the bottom of the Software Sources tab causes PackageKit to display source RPM, testing and debuginfo repositories as well. This box is unchecked by default.

6.2. Using Add/Remove Software

PackageKit's Software Update GUI window is a separate application from its Add/Remove Software application, although the two have intuitively similar interfaces. To find and install a new package, select ApplicationsSystem ToolsAdd/Remove Software from the Activities menu, or run the gpk-application command at the shell prompt.
PackageKit's Add/Remove Software window
Viewing PackageKit's Add/Remove Software window
Figure 6.4. PackageKit's Add/Remove Software window

6.2.1. Refreshing Software Sources (Yum Repositories)

To enable or disable a Yum repository, open a dialog box by sclicking SystemSoftware Sources, and select the Software Sources tab. Refer to Section 6.1.2, “Setting the Software Sources” for more information on available configuration options.
After enabling and/or disabling the correct Yum repositories, make sure that you have the latest list of available packages. Click on SystemRefresh Package Lists and PackageKit will obtain the latest lists of packages from all enabled software sources, that is, Yum repositories.

6.2.2. Finding Packages with Filters

You can view the list of all configured and unfiltered (see below) Yum repositories by opening Add/Remove Software and clicking SystemSoftware Sources. Once the software sources have been updated, it is often beneficial to apply some filters so that PackageKit retrieves the results of our Find queries faster. This is especially helpful when performing many package searches. Four of the filters in the Filters drop-down menu are used to split results by matching or not matching a single criterion. By default when PackageKit starts, these filters are all unapplied (No Filter), but once you do filter by one of them, that filter remains set until you either change it or close PackageKit.
Because you are usually searching for available packages that are not installed on the system, click FiltersInstalled and select the Only Available radio button.
Filtering out already-installed packages
filtering out packages which are already installed
Figure 6.5. Filtering out already-installed packages

Also, unless we require development files such as C header files, we can filter for Only End User Files and, in doing so, filter out all of the package_name-devel packages we are not interested in.
Filtering out development packages from the list of Find results
filtering out development packages from our results
Figure 6.6. Filtering out development packages from the list of Find results

The two remaining filters with submenus are:
Graphical
Narrows the search to either applications which provide a GUI interface (Only Graphical) or those that do not. This filter is useful when browsing for GUI applications that perform a specific function.
Free
Search for packages which are considered to be free software Refer to the Fedora Licensing List for details on approved licenses.
The remaining checkbox filters are always either checked or unchecked. They are:
Hide Subpackages
Checking the Hide Subpackages checkbox filters out generally-uninteresting packages that are typically only dependencies of other packages that we want. For example, checking Hide Subpackages and searching for package would cause the following related packages to be filtered out of the Find results (if it exists):
  • package-devel
  • package-libs
  • package-libs-devel
  • package-debuginfo
Only Newest Packages
Checking Only Newest Packages filters out all older versions of the same package from the list of results, which is generally what we want.

Using the Only Newest Packages filter

Checking Only Newest Packages filters out all but the most recent version of any package from the results list. This filter is often combined with the Only Available filter to search for the latest available versions of new (not installed) packages.
Only native packages
Checking the Only Native Packages box on a multilib system causes PackageKit to omit listing results for packages compiled for the architecture that runs in compatibility mode. For example, enabling this filter on a 64-bit system with an AMD64 CPU would cause all packages built for the 32-bit x86 CPU architecture not to be shown in the list of results, even though those packages are able to run on an AMD64 machine. Packages which are architecture-agnostic (i.e. noarch packages such as crontabs-1.10-32.1.el6.noarch.rpm) are never filtered out by checking Only Native Packages. This filter has no affect on non-multilib systems, such as x86 machines.

6.2.3. Installing and Removing Packages (and Dependencies)

With the two filters selected, Only Available and Only End User Files, search for the htop interactive process viewer and highlight the package. You now have access to some very useful information about it, including: a clickable link to the project homepage; the Yum package group it is found in, if any; the license of the package; a pointer to the GNOME menu location from where the application can be opened, if applicable; and the size of the package, which is relevant when we download and install it.
Viewing and installing a package with PackageKit's Add/Remove Software window
Viewing and installing a package with PackageKit's Add/Remove Software window
Figure 6.7. Viewing and installing a package with PackageKit's Add/Remove Software window

When the checkbox next to a package or group is checked, then that item is already installed on the system. Checking an unchecked box causes it to be marked for installation, which only occurs when the Apply button is clicked. In this way, you can search for and select multiple packages or package groups before performing the actual installation transactions. Additionally, you can remove installed packages by unchecking the checked box, and the removal will occur along with any pending installations when Apply is pressed. Dependency resolution , which may add additional packages to be installed or removed, is performed after pressing Apply. PackageKit will then display a window listing those additional packages to install or remove, and ask for confirmation to proceed.
Check htop and click the Apply button. You will then be prompted for the superuser password; enter it, and PackageKit will install htop. One nice feature of PackageKit is that, following installation, it sometimes presents you with a list of your newly-installed applications and offer you the choice of running them immediately. Alternatively, you will remember that finding a package and selecting it in the Add/Remove Software window shows you the Location of where in the GNOME menus its application shortcut is located, which is helpful when you want to run it.
Once it is installed, you can run htop, a colorful and enhanced version of the top process viewer, by opening a shell prompt and entering:
htop
htop is nifty, but we decide that top is good enough for us and we want to uninstall it. Remembering that we need to change the Only Available filter we recently used to install it to Only Installed in FiltersInstalled, we search for htop again and uncheck it. The program did not install any dependencies of its own; if it had, those would be automatically removed as well, as long as they were not also dependencies of any other packages still installed on our system.

Removing a package when other packages depend on it

Although PackageKit automatically resolves dependencies during package installation and removal, it is unable to remove a package without also removing packages which depend on it. This type of operation can only be performed by RPM, is not advised, and can potentially leave your system in a non-functioning state or cause applications to misbehave and/or crash.
Removing a package with PackageKit's Add/Remove Software window
Removing the htop package with PackageKit's Add/Remove Software window
Figure 6.8. Removing a package with PackageKit's Add/Remove Software window

6.2.4. Installing and Removing Package Groups

PackageKit also has the ability to install Yum package groups, which it calls Package collections. Clicking on Package collections in the top-left list of categories in the Software Updates window allows us to scroll through and find the package group we want to install. In this case, we want to install Czech language support (the Czech Support group). Checking the box and clicking Apply informs us how many additional packages must be installed in order to fulfill the dependencies of the package group.
Installing the Czech Support package group
Using PackageKit to install Czech language support with PackageKit's Add/Remove Software window
Figure 6.9. Installing the Czech Support package group

Similarly, installed package groups can be uninstalled by selecting Package collections, unchecking the appropriate checkbox, and applying.

6.2.5. Viewing the Transaction Log

PackageKit maintains a log of the transactions that it performs. To view the log, from the Add/Remove Software window, click SystemSoftware Log, or run the gpk-log command at the shell prompt.
The Software Log Viewer shows the Action, such as Updated Packages or Installed Packages, the Date on which that action was performed, the Username of the user who performed the action, and the front end Application the user used (such as Add/Remove Software, or Update System). The Details column provides the types of the transactions, such as Updated, Installed, or Removed, as well as the list of packages the transactions were performed on.
Viewing the log of package management transactions with the Software Log Viewer
Viewing the log of package management transactions with PackageKit's Software Log Viewer window
Figure 6.10. Viewing the log of package management transactions with the Software Log Viewer

Typing the name of a package in the top text entry field filters the list of transactions to those which affected that package.

6.3. PackageKit Architecture

Fedora provides the PackageKit suite of applications for viewing, updating, installing and uninstalling packages and package groups compatible with your system. Architecturally, PackageKit consists of several graphical front ends that communicate with the packagekitd daemon back end, which communicates with a package manager-specific back end that utilizes Yum to perform the actual transactions, such as installing and removing packages, etc.
Table 6.1, “PackageKit GUI windows, menu locations, and shell prompt commands” shows the name of the GUI window, how to start the window from the GNOME desktop or from the Add/Remove Software window, and the name of the command line application that opens that window.
Table 6.1. PackageKit GUI windows, menu locations, and shell prompt commands
Window Title Function How to Open Shell Command
Add/Remove Software Install, remove or view package info
From the GNOME panel: SystemAdministrationAdd/Remove Software
gpk-application
Software Update Perform package updates
From the GNOME panel: SystemAdministrationSoftware Update
gpk-update-viewer
Software Sources Enable and disable Yum repositories
From Add/Remove Software: SystemSoftware Sources
gpk-repo
Software Log Viewer View the transaction log
From Add/Remove Software: SystemSoftware Log
gpk-log
Software Update Preferences Set PackageKit preferences gpk-prefs
(Notification Area Alert) Alerts you when updates are available
From the GNOME panel: SystemPreferencesStartup Applications, Startup Programs tab
gpk-update-icon

The packagekitd daemon runs outside the user session and communicates with the various graphical front ends. The packagekitd daemon[1] communicates via the DBus system message bus with another back end, which utilizes Yum's Python API to perform queries and make changes to the system. On Linux systems other than Red Hat Enterprise Linux and Fedora, packagekitd can communicate with other back ends that are able to utilize the native package manager for that system. This modular architecture provides the abstraction necessary for the graphical interfaces to work with many different package managers to perform essentially the same types of package management tasks. Learning how to use the PackageKit front ends means that you can use the same familiar graphical interface across many different Linux distributions, even when they utilize a native package manager other than Yum.
In addition, PackageKit's separation of concerns provides reliability in that a crash of one of the GUI windows—or even the user's X Window session—will not affect any package management tasks being supervised by the packagekitd daemon, which runs outside of the user session.
All of the front end graphical applications discussed in this chapter are provided by the gnome-packagekit package instead of by PackageKit and its dependencies. Users working in a KDE environment may prefer to install the kpackagekit package, which provides a KDE interface for PackageKit.
Finally, PackageKit also comes with a console-based front end called pkcon.

6.4. Additional Resources

PackageKit home page — http://www.packagekit.org/index.html
Information about and mailing lists for PackageKit.
PackageKit FAQ — http://www.packagekit.org/pk-faq.html
An informative list of Frequently Asked Questions for the PackageKit software suite.
PackageKit Feature Matrix — http://www.packagekit.org/pk-matrix.html
Cross-reference PackageKit-provided features with the long list of package manager back ends.


[1] System daemons are typically long-running processes that provide services to the user or to other programs, and which are started, often at boot time. Daemons respond to the systemctl command and can be turned on or off permanently by using the systemctl enable or systemctl disablecommands. They can typically be recognized by a d appended to their name, such as the packagekitd daemon. Refer to Chapter 7, Services and Daemons for information about system services.

Part III. Infrastructure Services

This part provides information on how to configure services and daemons, configure authentication, and enable remote logins.

Table of Contents

7. Services and Daemons
7.1. Configuring Services
7.1.1. Enabling the Service
7.1.2. Disabling the Service
7.2. Running Services
7.2.1. Checking the Service Status
7.2.2. Running the Service
7.2.3. Stopping the Service
7.2.4. Restarting the Service
7.3. Additional Resources
7.3.1. Installed Documentation
7.3.2. Related Books
8. Configuring Authentication
8.1. Configuring System Authentication
8.1.1. Launching the Authentication Configuration Tool UI
8.1.2. Selecting the Identity Store for Authentication
8.1.3. Configuring Alternative Authentication Features
8.1.4. Setting Password Options
8.1.5. Configuring Authentication from the Command Line
8.1.6. Using Custom Home Directories
8.2. Using and Caching Credentials with SSSD
8.2.1. About the sssd.conf File
8.2.2. Starting and Stopping SSSD
8.2.3. Configuring SSSD to Work with System Services
8.2.4. Creating Domains
8.2.5. Configuring Access Control for SSSD Domains
8.2.6. Configuring Domain Failover
8.2.7. Managing the SSSD Cache
8.2.8. Configuring OpenSSH to Check SSSD for Cached Keys (TECH PREVIEW)
8.2.9. Using NSCD with SSSD
8.2.10. Troubleshooting SSSD
9. OpenSSH
9.1. The SSH Protocol
9.1.1. Why Use SSH?
9.1.2. Main Features
9.1.3. Protocol Versions
9.1.4. Event Sequence of an SSH Connection
9.2. An OpenSSH Configuration
9.2.1. Configuration Files
9.2.2. Starting an OpenSSH Server
9.2.3. Requiring SSH for Remote Connections
9.2.4. Using a Key-Based Authentication
9.3. OpenSSH Clients
9.3.1. Using the ssh Utility
9.3.2. Using the scp Utility
9.3.3. Using the sftp Utility
9.4. More Than a Secure Shell
9.4.1. X11 Forwarding
9.4.2. Port Forwarding
9.5. Additional Resources
9.5.1. Installed Documentation
9.5.2. Useful Websites

Chapter 7. Services and Daemons

Maintaining security on your system is extremely important, and one approach for this task is to manage access to system services carefully. Your system may need to provide open access to particular services (for example, httpd if you are running a web server). However, if you do not need to provide a service, you should turn it off to minimize your exposure to possible bug exploits.
This chapter covers the configuration of the services to be run when a system is started, and provides information on how to start, stop, and restart the services on the command line using the systemctl utility.

Keep the system secure

When you allow access for new services, always remember that both the firewall and SELinux need to be configured as well. One of the most common mistakes committed when configuring a new service is neglecting to implement the necessary firewall configuration and SELinux policies to allow access for it. For more information, refer to the Fedora 20 Security Guide.

7.1. Configuring Services

To allow you to configure which services are started at boot time, Fedora is shipped with the systemctl command line tool.

Do not use the ntsysv and chkconfig utilities

Although it is still possible to use the ntsysv and chkconfig utilities to manage services that have init scripts installed in the /etc/rc.d/init.d/ directory, it is advised that you use the systemctl utility.

Enabling the irqbalance service

To ensure optimal performance on POWER architecture, it is recommended that the irqbalance service is enabled. In most cases, this service is installed and configured to run during the Fedora 20 installation. To verify that irqbalance is running, type the following at a shell prompt:
systemctl status irqbalance.service

7.1.1. Enabling the Service

To configure a service to be automatically started at boot time, use the systemctl command in the following form:
systemctl enable service_name.service
The service will be started the next time you boot the system. For information on how to start the service immediately, refer to Section 7.2.2, “Running the Service”.
Example 7.1. Enabling the httpd service
Imagine you want to run the Apache HTTP Server on your system. Provided that you have the httpd package installed, you can enable the httpd service by typing the following at a shell prompt as root:
~]# systemctl enable httpd.service

7.1.2. Disabling the Service

To disable starting a service at boot time, use the systemctl command in the following form:
systemctl disable service_name.service
The next time you boot the system, the service will not be started. For information on how to stop the service immediately, refer to Section 7.2.3, “Stopping the Service”.
Example 7.2. Disabling the telnet service
In order to secure the system, users are advised to disable insecure connection protocols such as Telnet. You can make sure that the telnet service is disabled by running the following command as root:
~]# systemctl disable telnet.service

7.2. Running Services

The systemctl utility also allows you to determine the status of a particular service, as well as to start, stop, or restart a service.

Do not use the service utility

Although it is still possible to use the service utility to manage services that have init scripts installed in the /etc/rc.d/init.d/ directory, it is advised that you use the systemctl utility.

7.2.1. Checking the Service Status

To determine the status of a particular service, use the systemctl command in the following form:
systemctl status service_name.service
This command provides detailed information on the service's status. However, if you merely need to verify that a service is running, you can use the systemctl command in the following form instead:
systemctl is-active service_name.service
Example 7.3. Checking the status of the httpd service
Example 7.1, “Enabling the httpd service” illustrated how to enable starting the httpd service at boot time. Imagine that the system has been restarted and you need to verify that the service is really running. You can do so by typing the following at a shell prompt:
~]$ systemctl is-active httpd.service
active
You can also display detailed information about the service by running the following command:
~]$ systemctl status httpd.service
httpd.service - LSB: start and stop Apache HTTP Server
          Loaded: loaded (/etc/rc.d/init.d/httpd)
          Active: active (running) since Mon, 23 May 2011 21:38:57 +0200; 27s ago
         Process: 2997 ExecStart=/etc/rc.d/init.d/httpd start (code=exited, status=0/SUCCESS)
        Main PID: 3002 (httpd)
          CGroup: name=systemd:/system/httpd.service
                  ├ 3002 /usr/sbin/httpd
                  ├ 3004 /usr/sbin/httpd
                  ├ 3005 /usr/sbin/httpd
                  ├ 3006 /usr/sbin/httpd
                  ├ 3007 /usr/sbin/httpd
                  ├ 3008 /usr/sbin/httpd
                  ├ 3009 /usr/sbin/httpd
                  ├ 3010 /usr/sbin/httpd
                  └ 3011 /usr/sbin/httpd

To display a list of all active system services, use the following command:
systemctl list-units --type=service
This command provides a tabular output with each line consisting of the following columns:
  • UNIT — A systemd unit name. In this case, a service name.
  • LOAD — Information whether the systemd unit was properly loaded.
  • ACTIVE — A high-level unit activation state.
  • SUB — A low-level unit activation state.
  • JOB — A pending job for the unit.
  • DESCRIPTION — A brief description of the unit.
Example 7.4. Listing all active services
You can list all active services by using the following command:
~]$ systemctl list-units --type=service
UNIT                      LOAD   ACTIVE SUB     JOB DESCRIPTION
abrt-ccpp.service         loaded active exited      LSB: Installs coredump handler which saves segfault data
abrt-oops.service         loaded active running     LSB: Watches system log for oops messages, creates ABRT dump directories for each oops
abrtd.service             loaded active running     ABRT Automated Bug Reporting Tool
accounts-daemon.service   loaded active running     Accounts Service
atd.service               loaded active running     Job spooling tools
[output truncated]
In the example above, the abrtd service is loaded, active, and running, and it does not have any pending jobs.

7.2.2. Running the Service

To run a service, use the systemctl command in the following form:
systemctl start service_name.service
This will start the service in the current session. To configure the service to be started at boot time, refer to Section 7.1.1, “Enabling the Service”.
Example 7.5. Running the httpd service
Example 7.1, “Enabling the httpd service” illustrated how to run the httpd service at boot time. You can start the service immediately by typing the following at a shell prompt as root:
~]# systemctl start httpd.service

7.2.3. Stopping the Service

To stop a service, use the systemctl command in the following form:
systemctl stop service_name.service
This will stop the service in the current session. To disable starting the service at boot time, refer to Section 7.1.1, “Enabling the Service”.
Example 7.6. Stopping the telnet service
Example 7.2, “Disabling the telnet service” illustrated how to disable starting the telnet service at boot time. You can stop the service immediately by running the following command as root:
~]# systemctl stop telnet.service

7.2.4. Restarting the Service

To restart a service, use the systemctl command in the following form:
systemctl restart service_name.service
Example 7.7. Restarting the sshd service
For any changes in the /etc/ssh/sshd_config configuration file to take effect, it is required that you restart the sshd service. You can do so by typing the following at a shell prompt as root:
~]# systemctl restart sshd.service

7.3. Additional Resources

7.3.1. Installed Documentation

  • systemctl(1) — The manual page for the systemctl utility.

7.3.2. Related Books

Fedora 20 Security Guide
A guide to securing Fedora. It contains valuable information on how to set up the firewall, as well as the configuration of SELinux.

Chapter 8. Configuring Authentication

Authentication is the way that a user is identified and verified to a system. The authentication process requires presenting some sort of identity and credentials, like a username and password. The credentials are then compared to information stored in some data store on the system. In Fedora, the Authentication Configuration Tool helps configure what kind of data store to use for user credentials, such as LDAP.
For convenience and potentially part of single sign-on, Fedora can use a central daemon to store user credentials for a number of different data stores. The System Security Services Daemon (SSSD) can interact with LDAP, Kerberos, and external applications to verify user credentials. The Authentication Configuration Tool can configure SSSD along with NIS, Winbind, and LDAP, so that authentication processing and caching can be combined.

8.1. Configuring System Authentication

When a user logs into a Fedora system, that user presents some sort of credential to establish the user identity. The system then checks those credentials against the configured authentication service. If the credentials match and the user account is active, then the user is authenticated. (Once a user is authenticated, then the information is passed to the access control service to determine what the user is permitted to do. Those are the resources the user is authorized to access.)
The information to verify the user can be located on the local system or the local system can reference a user database on a remote system, such as LDAP or Kerberos.
The system must have a configured list of valid account databases for it to check for user authentication. On Fedora, the Authentication Configuration Tool has both GUI and command-line options to configure any user data stores.
A local system can use a variety of different data stores for user information, including Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind. Additionally, both LDAP and NIS data stores can use Kerberos to authenticate users.

Important

If a medium or high security level is set during installation or with the Security Level Configuration Tool, then the firewall prevents NIS authentication. For more information about firewalls, see the "Firewalls" section of the Security Guide.

8.1.1. Launching the Authentication Configuration Tool UI

  1. Log into the system as root.
  2. Open the System.
  3. Select the Administration menu.
  4. Select the Authentication item.
Alternatively, run the system-config-authentication command.

Important

Any changes take effect immediately when the Authentication Configuration Tool UI is closed.
There are two configuration tabs in the Authentication dialog box:
  • Identity & Authentication, which configures the resource used as the identity store (the data repository where the user IDs and corresponding credentials are stored).
  • Advanced Options, which allows authentication methods other than passwords or certificates, like smart cards and fingerprint.

8.1.2. Selecting the Identity Store for Authentication

The Identity & Authentication tab sets how users should be authenticated. The default is to use local system authentication, meaning the users and their passwords are checked against local system accounts. A Fedora machine can also use external resources which contain the users and credentials, including LDAP, NIS, and Winbind.
Local Authentication
Figure 8.1. Local Authentication

8.1.2.1. Configuring LDAP Authentication

Either the openldap-clients package or the sssd package is used to configure an LDAP server for the user database. Both packages are installed by default.
  1. Open the Authentication Configuration Tool, as in Section 8.1.1, “Launching the Authentication Configuration Tool UI”.
  2. Select LDAP in the User Account Database drop-down menu.
  3. Set the information that is required to connect to the LDAP server.
    • LDAP Search Base DN gives the root suffix or distinguished name (DN) for the user directory. All of the user entries used for identity/authentication will exist below this parent entry. For example, ou=people,dc=example,dc=com.
      This field is optional. If it is not specified, then SSSD attempts to detect the search base using the namingContexts and defaultNamingContext attributes in the LDAP server's configuration entry.
    • LDAP Server gives the URL of the LDAP server. This usually requires both the hostname and port number of the LDAP server, such as ldap://ldap.example.com:389.
      Entering the secure protocol in the URL, ldaps://, enables the Download CA Certificate button.
    • Use TLS to encrypt connections sets whether to use Start TLS to encrypt the connections to the LDAP server. This enables a secure connection over a standard port.
      Selecting TLS enables the Download CA Certificate button, which retrieves the issuing CA certificate for the LDAP server from whatever certificate authority issued it. The CA certificate must be in the privacy enhanced mail (PEM) format.

      Important

      Do not select Use TLS to encrypt connections if the server URL uses a secure protocol (ldaps). This option uses Start TLS, which initiates a secure connection over a standard port; if a secure port is specified, then a protocol like SSL must be used instead of Start TLS.
  4. Select the authentication method. LDAP allows simple password authentication or Kerberos authentication.
    The LDAP password option uses PAM applications to use LDAP authentication. This option requires either a secure (ldaps://) URL or the TLS option to connect to the LDAP server.

8.1.2.2. Configuring NIS Authentication

  1. Install the ypbind package. This is required for NIS services, but is not installed by default.
    [root@server ~]# yum install ypbind
    When the ypbind service is installed, the portmap and ypbind services are started and enabled to start at boot time.
  2. Open the Authentication Configuration Tool, as in Section 8.1.1, “Launching the Authentication Configuration Tool UI”.
  3. Select NIS in the User Account Database drop-down menu.
  4. Set the information to connect to the NIS server, meaning the NIS domain name and the server hostname. If the NIS server is not specified, the authconfig daemon scans for the NIS server.
  5. Select the authentication method. NIS allows simple password authentication or Kerberos authentication.
For more information about NIS, see the "Securing NIS" section of the Security Guide.

8.1.2.3. Configuring Winbind Authentication

Using Winbind as an authentication provider requires the samba-winbind package, which is installed by default.
  1. Open the Authentication Configuration Tool, as in Section 8.1.1, “Launching the Authentication Configuration Tool UI”.
  2. Select Winbind in the User Account Database drop-down menu.
  3. Set the information that is required to connect to the Microsoft Active Directory domain controller.
    • Winbind Domain gives the Windows domain to connect to.
      This should be in the Windows 2000 format, such as DOMAIN.
    • Security Model sets the security model to use for Samba clients. authconfig supports four types of security models:
      • ads configures Samba to act as a domain member in an Active Directory Server realm. To operate in this mode, the krb5-server package must be installed and Kerberos must be configured properly.
      • domain has Samba validate the username/password by authenticating it through a Windows primary or backup domain controller, much like a Windows server.
      • server has a local Samba server validate the username/password by authenticating it through another server, such as a Windows server. If the server authentication attempt fails, the system then attempts to authentication using user mode.
      • user requires a client to log in with a valid username and password. This mode does support encrypted passwords.
        The username format must be domain\user, such as EXAMPLE\jsmith.

        Note

        When verifying that a given user exists in the Windows domain, always use Windows 2000-style formats and escape the backslash (\) character. For example:
        [root@server ~]# getent passwd domain\\user DOMAIN\user:*:16777216:16777216:Name Surname:/home/DOMAIN/user:/bin/bash
        This is the default option.
    • Winbind ADS Realm gives the Active Directory realm that the Samba server will join. This is only used with the ads security model.
    • Winbind Domain Controllers gives the domain controller to use. For more information about domain controllers, refer to Section 13.1.6.3, “Domain Controller”.
    • Template Shell sets which login shell to use for Windows user account settings.
    • Allow offline login allows authentication information to be stored in a local cache. The cache is referenced when a user attempts to authenticate to system resources while the system is offline.
For more information about the winbindd service, refer to Section 13.1.2, “Samba Daemons and Related Services”.

8.1.2.4. Using Kerberos with LDAP or NIS Authentication

Both LDAP and NIS authentication stores support Kerberos authentication methods. Using Kerberos has a couple of benefits:
  • It uses a security layer for communication while still allowing connections over standard ports.
  • It automatically uses credentials caching with SSSD, which allows offline logins.
Using Kerberos authentication requires the krb5-libs and krb5-workstation packages.
The Kerberos password option from the Authentication Method drop-down menu automatically opens the fields required to connect to the Kerberos realm.
Kerberos Fields
Figure 8.2. Kerberos Fields

  • Realm gives the name for the realm for the Kerberos server. The realm is the network that uses Kerberos, composed of one or more key distribution centers (KDC) and a potentially large number of clients.
  • KDCs gives a comma-separated list of servers that issue Kerberos tickets.
  • Admin Servers gives a list of administration servers running the kadmind process in the realm.
  • Optionally, use DNS to resolve server hostname and to find additional KDCs within the realm.
For more information about Kerberos, refer to section "Using Kerberos" of the Fedora 20 Managing Single Sign-On and Smart Cards guide.

8.1.3. Configuring Alternative Authentication Features

The Authentication Configuration Tool also configures settings related to authentication behavior, apart from the identity store. This includes entirely different authentication methods (fingerprint scans and smart cards) or local authentication rules. These alternative authentication options are configured in the Advanced Options tab.
Advanced Options
Figure 8.3. Advanced Options

8.1.3.1. Using Fingerprint Authentication

When there is appropriate hardware available, the Enable fingerprint reader support option allows fingerprint scans to be used to authenticate local users in addition to other credentials.

8.1.3.2. Setting Local Authentication Parameters

There are two options in the Local Authentication Options area which define authentication behavior on the local system:
  • Enable local access control instructs the /etc/security/access.conf file to check for local user authorization rules.
  • Password Hashing Algorithm sets the hashing algorithm to use to encrypt locally-stored passwords.

8.1.3.3. Enabling Smart Card Authentication

When there are appropriate smart card readers available, a system can accept smart cards (or tokens) instead of other user credentials to authenticate.
Once the Enable smart card support option is selected, then the behaviors of smart card authentication can be defined:
  • Card Removal Action tells the system how to respond when the card is removed from the card reader during an active session. A system can either ignore the removal and allow the user to access resources as normal, or a system can immediately lock until the smart card is supplied.
  • Require smart card login sets whether a smart card is required for logins or simply allowed for logins. When this option is selected, all other methods of authentication are immediately blocked.

    Warning

    Do not select this option until you have successfully authenticated to the system using a smart card.
Using smart cards requires the pam_pkcs11 package.

8.1.3.4. Creating User Home Directories

There is an option (Create home directories on the first login) to create a home directory automatically the first time that a user logs in.
This option is beneficial with accounts that are managed centrally, such as with LDAP. However, this option should not be selected if a system like automount is used to manage user home directories.

8.1.4. Setting Password Options

Through the Authentication Configuration Tool, it is possible to set requirements of passwords and the classes of characters it will contain. Also, it can determine how consecutive characteres will be repeated within a password. This options are configured in the Password Options tab.
Password Options
Figure 8.4. Password Options

The Lenght option allows a maximun of 30 characters and the Character Classes option allows to choose from one to four according the classes: Lowercase, Uppercase, Digits and Other characters which are going to be required to create a password if they are enabled.

Important

An adecuated election to the lenght of password must be done correspondinly to the classes chossen. For example, the password FeDOrAwOrld which has two character classes contains eleven characters and The password FeD2rA1 contains seven characteres but has three character classes.
The maximun amount of consecutive character repetition is set to characters and classes. Both, the Same Character option and the Same Class option have the lenght of 30 as character repetition allowed.

8.1.5. Configuring Authentication from the Command Line

The authconfig command-line tool updates all of the configuration files and services required for system authentication, according to the settings passed to the script. Along with allowing all of the identity and authentication configuration options that can be set through the UI, the authconfig tool can also be used to create backup and kickstart files.
For a complete list of authconfig options, check the help output and the man page.

8.1.5.1. Tips for Using authconfig

There are some things to remember when running authconfig:
  • With every command, use either the --update or --test option. One of those options is required for the command to run successfully. Using --update writes the configuration changes. --test prints the changes to stdout but does not apply the changes to the configuration.
  • Each enable option has a corresponding disable option.

8.1.5.2. Configuring LDAP User Stores

To use an LDAP identity store, use the --enableldap. To use LDAP as the authentication source, use --enableldapauth and then the requisite connection information, like the LDAP server name, base DN for the user suffix, and (optionally) whether to use TLS. The authconfig command also has options to enable or disable RFC 2307bis schema for user entries, which is not possible through the Authentication Configuration UI.
Be sure to use the full LDAP URL, including the protocol (ldap or ldaps) and the port number. Do not use a secure LDAP URL (ldaps) with the --enableldaptls option.
authconfig --enableldap --enableldapauth --ldapserver=ldap://ldap.example.com:389,ldap://ldap2.example.com:389 --ldapbasedn="ou=people,dc=example,dc=com" --enableldaptls --ldaploadcacert=https://ca.server.example.com/caCert.crt --update
Instead of using --ldapauth for LDAP password authentication, it is possible to use Kerberos with the LDAP user store. These options are described in Section 8.1.5.5, “Configuring Kerberos Authentication”.

8.1.5.3. Configuring NIS User Stores

To use a NIS identity store, use the --enablenis. This automatically uses NIS authentication, unless the Kerberos parameters are explicitly set, so it uses Kerberos authentication (Section 8.1.5.5, “Configuring Kerberos Authentication”). The only parameters are to identify the NIS server and NIS domain; if these are not used, then the authconfig service scans the network for NIS servers.
authconfig --enablenis --nisdomain=EXAMPLE --nisserver=nis.example.com --update

8.1.5.4. Configuring Winbind User Stores

Windows domains have several different security models, and the security model used in the domain determines the authentication configuration for the local system.
For user and server security models, the Winbind configuration requires only the domain (or workgroup) name and the domain controller hostnames.
authconfig --enablewinbind --enablewinbindauth --smbsecurity=user|server  --enablewinbindoffline --smbservers=ad.example.com --smbworkgroup=EXAMPLE --update

Note

The username format must be domain\user, such as EXAMPLE\jsmith.
When verifying that a given user exists in the Windows domain, always use Windows 2000-style formats and escape the backslash (\) character. For example:
[root@server ~]# getent passwd domain\\user DOMAIN\user:*:16777216:16777216:Name Surname:/home/DOMAIN/user:/bin/bash
For ads and domain security models, the Winbind configuration allows additional configuration for the template shell and realm (ads only). For example:
authconfig --enablewinbind --enablewinbindauth --smbsecurity ads  --enablewinbindoffline --smbservers=ad.example.com --smbworkgroup=EXAMPLE --smbrealm EXAMPLE.COM --winbindtemplateshell=/bin/sh --update
There are a lot of other options for configuring Windows-based authentication and the information for Windows user accounts, such as name formats, whether to require the domain name with the username, and UID ranges. These options are listed in the authconfig help.

8.1.5.5. Configuring Kerberos Authentication

Both LDAP and NIS allow Kerberos authentication to be used in place of their native authentication mechanisms. At a minimum, using Kerberos authentication requires specifying the realm, the KDC, and the administrative server. There are also options to use DNS to resolve client names and to find additional admin servers.
authconfig NIS or LDAP options --enablekrb5 --krb5realm EXAMPLE --krb5kdc kdc.example.com:88,server.example.com:88 --krb5adminserver server.example.com:749 --enablekrb5kdcdns --enablekrb5realmdns --update

8.1.5.6. Configuring Local Authentication Settings

The Authentication Configuration Tool can also control some user settings that relate to security, such as creating home directories, setting password hash algorithms, and authorization. These settings are done independently of identity/user store settings.
For example, to create user home directories:
authconfig --enablemkhomedir --update
To set or change the hash algorithm used to encrypt user passwords:
authconfig --passalgo=sha512 --update

8.1.5.7. Configuring Fingerprint Authentication

There is one option to enable support for fingerprint readers. This option can be used alone or in conjunction with other authconfig settings, like LDAP user stores.
authconfig --enablefingerprint --update

8.1.5.8. Configuring Smart Card Authentication

All that is required to use smart cards with a system is to set the --enablesmartcard option:
authconfig --enablesmartcard --update
There are other configuration options for smart cards, such as changing the default smart card module, setting the behavior of the system when the smart card is removed, and requiring smart cards for login.
For example, this command instructs the system to lock out a user immediately if the smart card is removed (a setting of 1 ignores it if the smart card is removed):
authconfig --enablesmartcard --smartcardaction=0 --update
Once smart card authentication has been successfully configured and tested, then the system can be configured to require smart card authentication for users rather than simple password-based authentication.
authconfig --enablerequiresmartcard --update

Warning

Do not use the --enablerequiresmartcard option until you have successfully authenticated to the system using a smart card. Otherwise, users may be unable to log into the system.

8.1.5.9. Managing Kickstart and Configuration Files

The --update option updates all of the configuration files with the configuration changes. There are a couple of alternative options with slightly different behavior:
  • --kickstart writes the updated configuration to a kickstart file.
  • --test prints the full configuration, with changes, to stdout but does not edit any configuration files.
Additionally, authconfig can be used to back up and restore previous configurations. All archives are saved to a unique subdirectory in the /var/lib/authconfig/ directory. For example, the --savebackup option gives the backup directory as 2011-07-01:
authconfig --savebackup=2011-07-01
This backs up all of the authentication configuration files beneath the /var/lib/authconfig/backup-2011-07-01 directory.
Any of the saved backups can be used to restore the configuration using the --restorebackup option, giving the name of the manually-saved configuration:
authconfig --restorebackup=2011-07-01
Additionally, authconfig automatically makes a backup of the configuration before it applies any changes (with the --update option). The configuration can be restored from the most recent automatic backup, without having to specify the exact backup, using the --restorelastbackup option.

8.1.6. Using Custom Home Directories

If LDAP users have home directories that are not in /home and the system is configured to create home directories the first time users log in, then these directories are created with the wrong permissions.
  1. Apply the correct SELinux context and permissions from the /home directory to the home directory that is created on the local system. For example:
    # semanage fcontext -a -e /home /home/locale
  2. Install the oddjob-mkhomedir package on the system.
    This package provides the pam_oddjob_mkhomedir.so library, which the Authentication Configuration Tool uses to create home directories. The pam_oddjob_mkhomedir.so library, unlike the default pam_mkhomedir.so library, can create SELinux labels.
    The Authentication Configuration Tool automatically uses the pam_oddjob_mkhomedir.so library if it is available. Otherwise, it will default to using pam_mkhomedir.so.
  3. Make sure the oddjobd service is running.
  4. Re-run the Authentication Configuration Tool and enable home directories, as in Section 8.1.3, “Configuring Alternative Authentication Features”.
If home directories were created before the home directory configuration was changed, then correct the permissions and SELinux contexts. For example:
# semanage fcontext -a -e /home /home/locale
# restorecon -R -v /home/locale

8.2. Using and Caching Credentials with SSSD

The System Security Services Daemon (SSSD) provides access to different identity and authentication providers. SSSD is an intermediary between local clients and any configured data store. The local clients connect to SSSD and then SSSD contacts the external providers. This brings a number of benefits for administrators:
  • Reducing the load on identification/authentication servers. Rather than having every client service attempt to contact the identification server directly, all of the local clients can contact SSSD which can connect to the identification server or check its cache.
  • Permitting offline authentication. SSSD can optionally keep a cache of user identities and credentials that it retrieves from remote services. This allows users to authenticate to resources successfully, even if the remote identification server is offline or the local machine is offline.
  • Using a single user account. Remote users frequently have two (or even more) user accounts, such as one for their local system and one for the organizational system. This is necessary to connect to a virtual private network (VPN). Because SSSD supports caching and offline authentication, remote users can connect to network resources simply by authenticating to their local machine and then SSSD maintains their network credentials.
The System Security Services Daemon does not require any additional configuration or tuning to work with the Authentication Configuration Tool. However, SSSD can work with other applications, and the daemon may require configuration changes to improve the performance of those applications.

8.2.1. About the sssd.conf File

SSSD services and domains are configured in a .conf file. The default file is /etc/sssd/sssd.conf, although alternative files can be passed to SSSD by using the -c option with the sssd command:
# sssd -c /etc/sssd/customfile.conf
Both services and domains are configured individually, in separate sections on the configuration identified by [type/name] divisions, such as [domain/LDAP]. The configuration file uses simple key = value lines to set the configuration. Comment lines are set by either a hash sign (#) or a semicolon (;)
For example:
[section]
# Comment line
key1 = val1
key10 = val1,val2

8.2.2. Starting and Stopping SSSD

Note

Configure at least one domain before starting SSSD for the first time. See Section 8.2.4, “Creating Domains”.
Either the service command or the /etc/init.d/sssd script can start SSSD. For example:
# service sssd start
By default, SSSD is configured not to start automatically. There are two ways to change this behavior:
  • Using the authconfig command:
    [root@server ~]# authconfig --enablesssd --enablesssdauth --update
  • Using the chkconfig command:
    [root@server ~]# chkconfig sssd on

8.2.3. Configuring SSSD to Work with System Services

SSSD worked with specialized services that run in tandem with the SSSD process itself. SSSD and its associated services are configured in the sssd.conf file. The [sssd] section also lists the services that are active and should be started when sssd starts within the services directive.
SSSD currently provides several services:
  • A Name Service Switch (NSS) provider service that answers name service requests from the sssd_nss module. This is configured in the [nss] section of the SSSD configuration.
  • A PAM provider service that manages a PAM conversation through the sssd_pam module. This is configured in the [pam] section of the configuration.
  • monitor, a special service that monitors and starts or restarts all other SSSD services. Its options are specified in the [sssd] section of the /etc/sssd/sssd.conf configuration file.

Note

If a DNS lookup fails to return an IPv4 address for a hostname, SSSD attempts to look up an IPv6 address before returning a failure. This only ensures that the asynchronous resolver identifies the correct address.
The hostname resolution behavior is configured in the lookup family order option in the sssd.conf configuration file.

8.2.3.1. Configuring NSS Services

SSSD provides an NSS module, sssd_nss, which instructs the system to use SSSD to retrieve user information. The NSS configuration must include a reference to the SSSD module, and then the SSSD configuration sets how SSSD interacts with NSS.
8.2.3.1.1. About NSS Service Maps and SSSD
The Name Service Switch (NSS) provides a central configuration for services to look up a number of configuration and name resolution services. NSS provides one method of mapping system identities and services with configuration sources.
SSSD works with NSS as a provider services for several types of NSS maps:
  • Passwords (passwd)
  • User groups (shadow)
  • Groups (groups)
  • Netgroups (netgroups)
  • Services (services)
8.2.3.1.2. Configuring NSS Services to Use SSSD
NSS can use multiple identity and configuration providers for any and all of its service maps. The default is to use system files for services; for SSSD to be included, the nss_sss module has to be included for the desired service type.
  1. Use the Authentication Configuration tool to enable SSSD. This automatically configured the nsswitch.conf file to use SSSD as a provider.
    [root@server ~]# authconfig --enablesssd --update
    This automatically configures the password, shadow, group, and netgroups services maps to use the SSSD module:
    passwd:     files sss
    shadow:     files sss
    group:      files sss
    
    netgroup:   files sss
  2. The services map is not enabled by default when SSSD is enabled with authconfig. To include that map, open the nsswitch.conf file and add the sss module to the services map:
    [root@server ~]# vim /etc/nsswitch.conf
    
    ...
    services: file sss
    ...
8.2.3.1.3. Configuring SSSD to Work with NSS
The options and configuration that SSSD uses to service NSS requests are configured in the SSSD configuration file, in the [nss] services section.
  1. Open the sssd.conf file.
    [root@server ~]# vim /etc/sssd/sssd.conf
  2. Make sure that NSS is listed as one of the services that works with SSSD.
    [sssd]
    config_file_version = 2
    reconnection_retries = 3
    sbus_timeout = 30
    services = nss, pam
  3. In the [nss] section, change any of the NSS parameters. These are listed in Table 8.1, “SSSD [nss] Configuration Parameters”.
    [nss]
    filter_groups = root
    filter_users = root
    reconnection_retries = 3
    entry_cache_timeout = 300
    entry_cache_nowait_percentage = 75
  4. Restart SSSD.
    [root@server ~]# service sssd restart
Table 8.1. SSSD [nss] Configuration Parameters
Parameter Value Format Description
enum_cache_timeout integer Specifies how long, in seconds, sssd_nss should cache requests for information about all users (enumerations).
entry_cache_nowait_percentage integer Specifies how long sssd_nss should return cached entries before refreshing the cache. Setting this to zero (0) disables the entry cache refresh.
This configures the entry cache to update entries in the background automatically if they are requested if the time before the next update is a certain percentage of the next interval. For example, if the interval is 300 seconds and the cache percentage is 75, then the entry cache will begin refreshing when a request comes in at 225 seconds — 75% of the interval.
The allowed values for this option are 0 to 99, which sets the percentage based on the entry_cache_timeout value. The default value is 50%.
entry_negative_timeout integer Specifies how long, in seconds, sssd_nss should cache negative cache hits. A negative cache hit is a query for an invalid database entries, including non-existent entries.
filter_users, filter_groups string Tells SSSD to exclude certain users from being fetched from the NSS database. This is particularly useful for system accounts such as root.
filter_users_in_groups Boolean Sets whether users listed in the filter_users list appear in group memberships when performing group lookups. If set to FALSE, group lookups return all users that are members of that group. If not specified, this value defaults to true, which filters the group member lists.
debug_level integer, 0 - 9 Sets a debug logging level.

8.2.3.2. Configuring the PAM Service

Warning

A mistake in the PAM configuration file can lock users out of the system completely. Always back up the configuration files before performing any changes, and keep a session open so that any changes can be reverted.
SSSD provides a PAM module, sssd_pam, which instructs the system to use SSSD to retrieve user information. The PAM configuration must include a reference to the SSSD module, and then the SSSD configuration sets how SSSD interacts with PAM.
To configure the PAM service:
  1. Use authconfig to enable SSSD for system authentication.
    # authconfig --update --enablesssd --enablesssdauth
    This automatically updates the PAM configuration to reference all of the SSSD modules:
    #%PAM-1.0
    # This file is auto-generated.
    # User changes will be destroyed the next time authconfig is run.
    auth        required      pam_env.so
    auth        sufficient    pam_unix.so nullok try_first_pass
    auth        requisite     pam_succeed_if.so uid >= 500 quiet
    auth sufficient pam_sss.so use_first_pass
    auth        required      pam_deny.so
    
    account     required      pam_unix.so 
    account     sufficient    pam_localuser.so
    account     sufficient    pam_succeed_if.so uid < 500 quiet
    account [default=bad success=ok user_unknown=ignore] pam_sss.so
    account     required      pam_permit.so
    
    password    requisite     pam_cracklib.so try_first_pass retry=3
    password    sufficient    pam_unix.so sha512 shadow nullok try_first_pass use_authtok
    password sufficient pam_sss.so use_authtok
    password    required      pam_deny.so
    
    session     optional      pam_keyinit.so revoke
    session     required      pam_limits.so
    session     [success=1 default=ignore] pam_succeed_if.so service in crond quiet use_uid
    session sufficient pam_sss.so
    session     required      pam_unix.so
    
    These modules can be set to include statements, as necessary.
  2. Open the sssd.conf file.
    # vim /etc/sssd/sssd.conf
  3. Make sure that PAM is listed as one of the services that works with SSSD.
    [sssd]
    config_file_version = 2
    reconnection_retries = 3
    sbus_timeout = 30
    services = nss, pam
  4. In the [pam] section, change any of the PAM parameters. These are listed in Table 8.2, “SSSD [pam] Configuration Parameters”.
    [pam]
    reconnection_retries = 3
    offline_credentials_expiration = 2
    offline_failed_login_attempts = 3
    offline_failed_login_delay = 5
  5. Restart SSSD.
    [root@server ~]# service sssd restart
Table 8.2. SSSD [pam] Configuration Parameters
Parameter Value Format Description
offline_credentials_expiration integer Sets how long, in days, to allow cached logins if the authentication provider is offline. This value is measured from the last successful online login. If not specified, this defaults to zero (0), which is unlimited.
offline_failed_login_attempts integer Sets how many failed login attempts are allowed if the authentication provider is offline. If not specified, this defaults to zero (0), which is unlimited.
offline_failed_login_delay integer Sets how long to prevent login attempts if a user hits the failed login attempt limit. If set to zero (0), the user cannot authenticate while the provider is offline once he hits the failed attempt limit. Only a successful online authentication can re-enable offline authentication. If not specified, this defaults to five (5).

8.2.4. Creating Domains

SSSD recognizes domains, which are associated with the different identity servers. Domains are a combination of an identity provider and an authentication method. SSSD works with LDAP identity providers (including OpenLDAP, Red Hat Directory Server, and Microsoft Active Directory) and can use native LDAP authentication or Kerberos authentication.
As long as they belong to different domains, SSSD can recognize different users with the same username. For example, SSSD can successfully authenticate both jsmith in the ldap.example.com domain and jsmith in the ldap.otherexample.com domain. SSSD allows requests using fully-qualified domain names, so requesting information for jsmith@ldap.example.com returns the proper user account. Specifying only the username returns the user for whichever domain comes first in the lookup order.

Tip

SSSD has a filter_users option, which excludes the specified users from being returned in a search.
Configuring a domain defines both where user information is stored and how those users are allowed to authenticate to the system. The possible combinations are listed in Table 8.3, “Identity Store and Authentication Type Combinations”.
Table 8.3. Identity Store and Authentication Type Combinations
Identification Provider Authentication Provider
LDAP LDAP
LDAP Kerberos
proxy LDAP
proxy Kerberos
proxy proxy

8.2.4.1. General Rules and Options for Configuring a Domain

A domain configuration defines the identity provider, the authentication provider, and any specific configuration to access the information in those providers. There are two types of identity providers — LDAP and proxy —three types of authentication providers — LDAP, Kerberos, and proxy. The identity and authentication providers can be configured in any combination in a domain entry.
Along with the domain entry itself, the domain name must be added to the list of domains that SSSD will query. For example:
domains = LOCAL,Name

[domain/Name]
id_provider = type
auth_provider = type
provider_specific = value
global = value
global attributes are available to any type of domain, such as cache and time out settings. Each identity and authentication provider has its own set of required and optional configuration parameters.
Table 8.4. General [domain] Configuration Parameters
Parameter Value Format Description
id_provider string Specifies the data provider identity backend to use for this domain. The supported identity backends are:
  • ldap
  • ipa, compatible with FreeIPA version 2.x and Identity Management in Fedora
  • proxy for a legacy NSS provider, such as nss_nis. Using a proxy ID provider also requires specifying the legacy NSS library to load to start successfully, set in the proxy_lib_name option.
  • local, the SSSD internal local provider
auth_provider string Sets the authentication provider used for the domain. The default value for this option is the value of id_provider. The supported authentication providers are ldap, ipa, krb5 (Kerberos), proxy, and none.
min_id,max_id integer Optional. Specifies the UID and GID range for the domain. If a domain contains entries that are outside that range, they are ignored. The default value for min_id is 1; the default value for max_id is 0, which is unlimited.

Important

The default min_id value is the same for all types of identity provider. If LDAP directories are using UID numbers that start at one, it could cause conflicts with users in the local /etc/passwd file. To avoid these conflicts, set min_id to 1000 or higher as possible.
enumerate Boolean Optional. Specifies whether to list the users and groups of a domain. Enumeration means that the entire set of available users and groups on the remote source is cached on the local machine. When enumeration is disabled, users and groups are only cached as they are requested.

Warning

When enumeration is enabled, reinitializing a client results in a complete refresh of the entire set of available users and groups from the remote source. Similarly, when SSSD is connected to a new server, the entire set of available users and groups from the remote source is pulled and cached on the local machine. In a domain with a large number of clients connected to a remote source, this refresh process can harm the network performance because of frequent queries from the clients. If the set of available users and groups is large enough, it degrades client performance as well.
The default value for this parameter is false, which disables enumeration.
cache_credentials Boolean Optional. Specifies whether to store user credentials in the local SSSD domain database cache. The default value for this parameter is false. Set this value to true for domains other than the LOCAL domain to enable offline authentication.
entry_cache_timeout integer Optional. Specifies how long, in seconds, SSSD should cache positive cache hits. A positive cache hit is a successful query.
use_fully_qualified_names Boolean Optional. Specifies whether requests to this domain require fully-qualified domain names. If set to true, all requests to this domain must use fully-qualified domain names. It also means that the output from the request displays the fully-qualified name. Restricting requests to fully-qualified user names allows SSSD to differentiate between domains with users with conflicting usernames.
If use_fully_qualified_names is set to false, it is possible to use the fully-qualified name in the requests, but only the simplified version is displayed in the output.
SSSD can only parse names based on the domain name, not the realm name. The same name can be used for both domains and realms, however.

8.2.4.2. Configuring an LDAP Domain

An LDAP domain simply means that SSSD uses an LDAP directory as the identity provider (and, optionally, also as an authentication provider). SSSD supports several major directory services:
  • Red Hat Directory Server
  • OpenLDAP
  • Microsoft Active Directory 2008, with Subsystem for UNIX-based Applications

Note

DNS service discovery allows the LDAP backend to find the appropriate DNS servers to connect to automatically using a special DNS query.
8.2.4.2.1. Parameters for Configuring an LDAP Domain
An LDAP directory can function as both an identity provider and an authentication provider. The configuration requires enough information to identify and connect to the user directory in the LDAP server, but the way that those connection parameters are defined is flexible.
Other options are available to provide more fine-grained control, like specifying a user account to use to connect to the LDAP server or using different LDAP servers for password operations. The most common options are listed in Table 8.5, “LDAP Domain Configuration Parameters”. All of the options listed in Section 8.2.4.1, “General Rules and Options for Configuring a Domain” are also available for LDAP domains.

Tip

Many other options are listed in the man page for LDAP domain configuration, sssd-ldap(5).
Table 8.5. LDAP Domain Configuration Parameters
Parameter Description
ldap_uri Gives a comma-separated list of the URIs of the LDAP servers to which SSSD will connect. The list is given in order of preference, so the first server in the list is tried first. Listing additional servers provides failover protection. This can be detected from the DNS SRV records if it is not given.
ldap_search_base Gives the base DN to use for performing LDAP user operations.
ldap_tls_reqcert Specifies how to check for SSL server certificates in a TLS session. There are four options:
  • never disables requests for certificates.
  • allow requests a certificate, but proceeds normally even if no certificate is given or a bad certificate is given.
  • try requests a certificate and proceeds normally if no certificate is given, If a bad certificate is given, the session terminates.
  • demand and hard are the same option. This requires a valid certificate or the session is terminated.
The default is hard.
ldap_tls_cacert Gives the full path and file name to the file that contains the CA certificates for all of the CAs that SSSD recognizes. SSSD will accept any certificate issued by these CAs.
This uses the OpenLDAP system defaults if it is not given explicitly.
ldap_referrals Sets whether SSSD will use LDAP referrals, meaning forwarding queries from one LDAP database to another. SSSD supports database-level and subtree referrals. For referrals within the same LDAP server, SSSD will adjust the DN of the entry being queried. For referrals that go to different LDAP servers, SSSD does an exact match on the DN. Setting this value to true enables referrals; this is the default.
ldap_schema Sets what version of schema to use when searching for user entries. This can be either rfc2307 or rfc2307bis. The default is rfc2307.
In RFC 2307, group objects use a multi-valued attribute, memberuid, which lists the names of the users that belong to that group. In RFC 2307bis, group objects use the member attribute, which contains the full distinguished name (DN) of a user or group entry. RFC 2307bis allows nested groups usning the member attribute. Because these different schema use different definitions for group membership, using the wrong LDAP schema with SSSD can affect both viewing and managing network resources, even if the appropriate permissions are in place.
For example, with RFC 2307bis, all groups are returned when using nested groups or primary/secondary groups.
$ id
uid=500(myserver) gid=500(myserver) groups=500(myserver),510(myothergroup)
If SSSD is using RFC 2307 schema, only the primary group is returned.
This setting only affects how SSSD determines the group members. It does not change the actual user data.
ldap_search_timeout Sets the time, in seconds, that LDAP searches are allowed to run before they are canceled and cached results are returned. This defaults to five when the enumerate value is false and defaults to 30 when enumerate is true.
When an LDAP search times out, SSSD automatically switches to offline mode.
ldap_network_timeout Sets the time, in seconds, SSSD attempts to poll an LDAP server after a connection attempt fails. The default is six seconds.
ldap_opt_timeout Sets the time, in seconds, to wait before aborting synchronous LDAP operations if no response is received from the server. This option also controls the timeout when communicating with the KDC in case of a SASL bind. The default is five seconds.

8.2.4.2.2. LDAP Domain Example
The LDAP configuration is very flexible, depending on your specific environment and the SSSD behavior. These are some common examples of an LDAP domain, but the SSSD configuration is not limited to these examples.

Note

Along with creating the domain entry, add the new domain to the list of domains for SSSD to query in the sssd.conf file. For example:
domains = LOCAL,LDAP1,AD,PROXYNIS
Example 8.1. A Basic LDAP Domain Configuration
An LDAP domain requires three things:
  • An LDAP server
  • The search base
  • A way to establish a secure connection
The last item depends on the LDAP environment. SSSD requires a secure connection since it handles sensitive information. This connection can be a dedicated TLS/SSL connection or it can use Start TLS.
Using a dedicated TLS/SSL connection simply uses an LDAPS connection to connect to the server and is therefore set as part of the ldap_uri option:
# An LDAP domain
[domain/LDAP]
enumerate = false
cache_credentials = true

id_provider = ldap
auth_provider = ldap

ldap_uri = ldaps://ldap.example.com:636
ldap_search_base = dc=example,dc=com
Using Start TLS requires a way to input the certificate information to establish a secure connection dynamically over an insecure port. This is done using the ldap_id_use_start_tls option to use Start TLS and then ldap_tls_cacert to identify the CA certificate which issued the SSL server certificates.
# An LDAP domain
[domain/LDAP]
enumerate = false
cache_credentials = true

id_provider = ldap
auth_provider = ldap

ldap_uri = ldap://ldap.example.com
ldap_search_base = dc=example,dc=com
ldap_id_use_start_tls = true
ldap_tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

8.2.4.2.3. Active Directory Domain Example
For SSSD to work with an Active Directory domain, both the Active Directory domain and the local system have to be configured specially to communicate with one another.

Note

The Microsoft Active Directory documentation has complete procedures for configuring the Active Directory domain.
  1. Using authconfig, set the Linux client to use Active Directory as its LDAP identity provider. For example:
    authconfig --enableldap --enableldapauth --ldapserver=ldap://ad.example.com:389 --enablekrb5 --krb5realm AD-REALM.EXAMPLE.COM --krb5kdc ad-kdc.example.com:88 --krb5adminserver ad-kdc.example.com:749 --update
    The authconfig command is described in Section 8.1, “Configuring System Authentication”.
  2. Create the Active Directory Domain Services role.
  3. Add the Identity Management for UNIX service to the Active Directory Domain Services role. Use the Unix NIS domain as the domain name in the configuration.
  4. On the Active Directory server, create a new Computer object with the name of the Linux client.
    1. In the Administrative Tools menu, select the Active Directory Users and Computers application.
    2. Expand the Active Directory root object, such as ad.example.com.
    3. Right-click Computers, and select the New and the Computer item.
    4. Enter the name for the Linux client, such as rhel-server, and click OK.
    5. Expand the Computers object.
    6. Right-click the rhel-server object, and select Properties.
    7. In the UNIX Attributes, enter the name of the Linux NIS domain and the IP address of the Linux server.
      Click OK.
  5. From the command prompt on the Active Directory server, create a machine account, password, and UPN for the Linux host principal.
    C:\> setspn -A host/rhel-server.example.com@AD-REALM.EXAMPLE.COM rhel-server
    Registering ServicePrincipalNames for CN=rhel server,CN=Computers,DC=ad,DC=example,DC=com
            host/rhel server.example.com@AD-REALM.EXAMPLE.COM
    Updated object						
    	
    C:\> setspn -L rhel-server 
    Registered ServicePrincipalNames for CN=rhel server,CN=Computers,DC=ad,DC=example,DC=com:
            host/rhel server.example.com@AD-REALM.EXAMPLE.COM
    
    C:\> ktpass /princ host/rhel-server.example.com@AD-REALM.EXAMPLE.COM /out rhel-server.keytab /crypto all /ptype KRB5_NT_PRINCIPAL -desonly /mapuser AD\rhel-server$ +rndPass
    
    Targeting domain controller: 
        ad.example.com
    Using legacy password setting method
    Successfully mapped host/rhel server.redhat.com 
    ... 8< ...
  6. Copy the keytab from the Active Directory server to the Linux client, and save it as /etc/krb5.keytab.
  7. On the Linux system, reset the permissions and owner for the keytab file.
    [root@rhel-server ~]# chown root:root /etc/krb5.keytab 
    	
    [root@rhel-server ~]# chmod 0600 /etc/krb5.keytab
  8. Restore the SELinux file permissions for the keytab.
    [root@rhel-server ~]# restorecon /etc/krb5.keytab
  9. Verify that the host can connect to the Active Directory domain.
    [root@rhel-server ~]# kinit -k -t /etc/krb5.keytab host/rhel-server.example.com@AD-REALM.EXAMPLE.COM
  10. On the Active Directory server, create a a group for the Linux users.
    1. Create a new group named unixusers.
    2. Open the unixusers group and open the Unix Attributes tab.
    3. Configure the Unix settings:
      • The NIS domain
      • The UID
      • The login shell, to /bin/bash
      • The home directory, to /home/aduser
      • The primary group name, to unixusers
  11. Then, configure the SSSD domain on the Linux machine.
    Example 8.2. An Active Directory 2008 Domain
    [root@rhel-server ~]# vim /etc/sssd/sssd.conf
    
    [sssd]
    config_file_version = 2
    domains = ad.example.com
    services = nss, pam
    
    [nss]
    
    [pam]
    
    [domain/ad.example.com]
    cache_credentials = true
    enumerate = false
    
    id_provider = ldap
    auth_provider = krb5
    chpass_provider = krb5
    access_provider = ldap
    
    ldap_sasl_mech = GSSAPI
    ldap_sasl_authid = host/rhel-server.example.com@AD-REALM.EXAMPLE.COM 
    
    
    ldap_schema = rfc2307bis
    
    ldap_user_search_base = ou=user accounts,dc=ad,dc=example,dc=com
    ldap_user_object_class = user
    ldap_user_home_directory = unixHomeDirectory
    ldap_user_principal = userPrincipalName
    ldap_user_name = sAMAccountName
    
    ldap_group_search_base = ou=groups,dc=ad,dc=example,dc=com
    ldap_group_object_class = group
    
    ldap_access_order = expire
    ldap_account_expire_policy = ad
    ldap_force_upper_case_realm = true
    ldap_disable_referrals = true
    
    #krb5_server = server.ad.example.com
    krb5_realm = AD-REALM.EXAMPLE.COM

    These options are described in the man page for LDAP domain configuration, sssd-ldap(5).
  12. Restart SSSD.
    [root@rhel-server ~]# service sssd restart
8.2.4.2.4. Using IP Addresses in Certificate Subject Names
Using an IP address in the ldap_uri option instead of the server name may cause the TLS/SSL connection to fail. TLS/SSL certificates contain the server name, not the IP address. However, the subject alternative name field in the certificate can be used to include the IP address of the server, which allows a successful secure connection using an IP address.
  1. Convert an existing certificate into a certificate request. The signing key (-signkey) is the key of the issuer of whatever CA originally issued the certificate. If this is done by an external CA, it requires a separate PEM file; if the certificate is self-signed, then this is the certificate itself. For example:
    openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey key.pem
    With a self-signed certificate:
    openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey old_cert.pem
  2. Edit the /etc/pki/tls/openssl.cnf configuration file to include the server's IP address under the [ v3_ca ] section:
    subjectAltName = IP:10.0.0.10
  3. Use the generated certificate request to generate a new self-signed certificate with the specified IP address:
    openssl x509 -req -in req.pem -out new_cert.pem -extfile ./openssl.cnf -extensions v3_ca -signkey old_cert.pem
    The -extensions option sets which extensions to use with the certificate. For this, it should be v3_ca to load the appropriate section.
  4. Copy the private key block from the old_cert.pem file into the new_cert.pem file to keep all relevant information in one file.
When creating a certificate through the certutil utility provided by the nss-utils package, note that certutil supports DNS subject alternative names for certificate creation only.

8.2.4.3. Configuring Kerberos Authentication with a Domain

Both LDAP and proxy identity providers can use a separate Kerberos domain to supply authentication. Configuring a Kerberos authentication provider requires the key distribution center (KDC) and the Kerberos domain. All of the principal names must be available in the specified identity provider; if they are not, SSSD constructs the principals using the format username@REALM.

Note

Kerberos can only provide authentication; it cannot provide an identity database.
SSSD assumes that the Kerberos KDC is also a Kerberos kadmin server. However, production environments commonly have multiple, read-only replicas of the KDC and only a single kadmin server. Use the krb5_kpasswd option to specify where the password changing service is running or if it is running on a non-default port. If the krb5_kpasswd option is not defined, SSSD tries to use the Kerberos KDC to change the password.
The basic Kerberos configuration options are listed in Table 8.6, “Kerberos Authentication Configuration Parameters”. The sssd-krb5(5) man page has more information about Kerberos configuration options.
Example 8.3. Basic Kerberos Authentication
# A domain with identities provided by LDAP and authentication by Kerberos
[domain/KRBDOMAIN]
enumerate = false
id_provider = ldap
chpass_provider = krb5
ldap_uri = ldap://ldap.example.com
ldap_search_base = dc=example,dc=com
ldap-tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

auth_provider = krb5
krb5_server = 192.168.1.1, kerberos.example.com
krb5_realm = EXAMPLE.COM
krb5_kpasswd = kerberos.admin.example.com
krb5_auth_timeout = 15

Table 8.6. Kerberos Authentication Configuration Parameters
Parameter Description
chpass_provider Specifies which service to use for password change operations. This is assumed to be the same as the authentication provider. To use Kerberos, set this to krb5.
krb5_server Gives a comma-separated list of IP addresses or hostnames of Kerberos servers to which SSSD will connect. The list is given in order of preference, so the first server in the list is tried first. Listing additional servers provides failover protection.
When using service discovery for KDC or kpasswd servers, SSSD first searches for DNS entries that specify UDP as the connection protocol, and then falls back to TCP.
krb5_realm Identies the Kerberos realm served by the KDC.
krb5_lifetime Requests a Kerberos ticket with the specified lifetime in seconds (s), minutes (m), hours (h) or days (d).
krb5_renewable_lifetime Requests a renewable Kerberos ticket with a total lifetime that is specified in seconds (s), minutes (m), hours (h) or days (d).
krb5_renew_interval Sets the time, in seconds, for SSSD to check if tickets should be renewed. Tickets are renewed automatically once they exceed half their lifetime. If this option is missing or set to zero, then automatic ticket renewal is disabled.
krb5_store_password_if_offline Sets whether to store user passwords if the Kerberos authentication provider is offline, and then to use that cache to request tickets when the provider is back online. The default is false, which does not store passwords.
krb5_kpasswd Lists alternate Kerberos kadmin servers to use if the change password service is not running on the KDC.
krb5_ccname_template Gives the directory to use to store the user's credential cache. This can be templatized, and the following tokens are supported:
  • %u, the user's login name
  • %U, the user's login UID
  • %p, the user's principal name
  • %r, the realm name
  • %h, the user's home directory
  • %d, the value of the krb5ccache_dir parameter
  • %P, the process ID of the SSSD client.
  • %%, a literal percent sign (%)
  • XXXXXX, a string at the end of the template which instructs SSSD to create a unique filename safely
For example:
krb5_ccname_template = FILE:%d/krb5cc_%U_XXXXXX
krb5_ccachedir Specifies the directory to store credential caches. This can be templatized, using the same tokens as krb5_ccname_template, except for %d and %P. If %u, %U, %p, or %h are used, then SSSD creates a private directory for each user; otherwise, it creates a public directory.
krb5_auth_timeout Gives the time, in seconds, before an online authentication or change password request is aborted. If possible, the authentication request is continued offline. The default is 15 seconds.

8.2.4.4. Configuring a Proxy Domain

A proxy with SSSD is just a relay, an intermediary configuration. SSSD connects to its proxy service, and then that proxy loads the specified libraries. This allows SSSD to use some resources that it otherwise would not be able to use. For example, SSSD only supports LDAP and Kerberos as authentication providers, but using a proxy allows SSSD to use alternative authentication methods like a fingerprint scanner or smart card.
Table 8.7. Proxy Domain Configuration Parameters
Parameter Description
proxy_pam_target Specifies the target to which PAM must proxy as an authentication provider. The PAM target is a file containing PAM stack information in the default PAM directory, /etc/pam.d/.
This is used to proxy an authentication provider.

Important

Ensure that the proxy PAM stack does not recursively include pam_sss.so.
proxy_lib_name Specifies which existing NSS library to proxy identity requests through.
This is used to proxy an identity provider.

Example 8.4. Proxy Identity and Kerberos Authentication
The proxy library is loaded using the proxy_lib_name parameter. This library can be anything as long as it is compatible with the given authentication service. For a Kerberos authentication provider, it must be a Kerberos-compatible library, like NIS.
[domain/PROXY_KRB5]
auth_provider = krb5
krb5_server = 192.168.1.1
krb5_realm = EXAMPLE.COM

id_provider = proxy
proxy_lib_name = nis
enumerate = true
cache_credentials = true

Example 8.5. LDAP Identity and Proxy Authentication
The proxy library is loaded using the proxy_pam_target parameter. This library must be a PAM module that is compatible with the given identity provider. For example, this uses a PAM fingerprint module with LDAP:
[domain/LDAP_PROXY]
id_provider = ldap
ldap_uri = ldap://example.com
ldap_search_base = dc=example,dc=com

auth_provider = proxy
proxy_pam_target = sssdpamproxy
enumerate = true
cache_credentials = true
After the SSSD domain is configured, make sure that the specified PAM files are configured. In this example, the target is sssdpamproxy, so create a /etc/pam.d/sssdpamproxy file and load the PAM/LDAP modules:
auth          required      pam_frprint.so
account       required      pam_frprint.so
password      required      pam_frprint.so
session       required      pam_frprint.so

Example 8.6. Proxy Identity and Authentication
SSSD can have a domain with both identity and authentication proxies. The only configuration given then are the proxy settings, proxy_pam_target for the authentication PAM module and proxy_lib_name for the service, like NIS or LDAP.
This example illustrates a possible configuration, but this is not a realistic configuration. If LDAP is used for identity and authentication, then both the identity and authentication providers should be set to the LDAP configuration, not a proxy.
[domain/PROXY_PROXY]
auth_provider = proxy
id_provider = proxy
proxy_lib_name = ldap
proxy_pam_target = sssdproxyldap
enumerate = true 
cache_credentials = true
Once the SSSD domain is added, then update the system settings to configure the proxy service:
  1. Create a /etc/pam.d/sssdproxyldap file which requires the pam_ldap.so module:
    auth          required      pam_ldap.so
    account       required      pam_ldap.so
    password      required      pam_ldap.so
    session       required      pam_ldap.so
  2. Make sure the nss-pam-ldap package is installed.
    [root@server ~]# yum install nss-pam-ldap
  3. Edit the /etc/nslcd.conf file, the configuration file for the LDAP name service daemon, to contain the information for the LDAP directory:
    uid nslcd
    gid ldap
    uri ldaps://ldap.example.com:636
    base dc=example,dc=com
    ssl on
    tls_cacertdir /etc/openldap/cacerts

8.2.5. Configuring Access Control for SSSD Domains

SSSD provides a rudimentary access control for domain configuration, allowing either simple user allow/deny lists or using the LDAP backend itself.

8.2.5.1. Using the Simple Access Provider

The Simple Access Provider allows or denies access based on a list of usernames or groups.
The Simple Access Provider is a way to restrict access to certain, specific machines. For example, if a company uses laptops, the Simple Access Provider can be used to restrict access to only a specific user or a specific group, even if a different user authenticated successfully against the same authentication provider.
The most common options are simple_allow_users and simple_allow_groups, which grant access explicitly to specific users (either the given users or group members) and deny access to everyone else. It is also possible to create deny lists (which deny access only to explicit people and implicitly allow everyone else access).
The Simple Access Provider adheres to the following four rules to determine which users should or should not be granted access:
  • If both the allow and deny lists are empty, access is granted.
  • If any list is provided, allow rules are evaluated first, and then deny rules. Practically, this means that deny rules supersede allow rules.
  • If an allowed list is provided, then all users are denied access unless they are in the list.
  • If only deny lists are provided, then all users are allowed access unless they are in the list.
This example grants access to two users and anyone who belongs to the IT group; implicitly, all other users are denied:
[domain/example.com]
access_provider = simple
simple_allow_users = jsmith,bjensen
simple_allow_groups = itgroup

Note

The LOCAL domain in SSSD does not support simple as an access provider.
Other options are listed in the sssd-simple man page, but these are rarely used.

8.2.5.2. Using the LDAP Access Filter

The LDAP server itself can provide the access control rules. The associated filter option (ldap_access_filter) specifies which users are granted access to the specified host. The user filter must be used or all users are denied access.
For example:
[domain/example.com]
access_provider = ldap
ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com

Note

Offline caching for LDAP access providers is limited to determining whether the user's last online login attempt was successful. Users that were granted access during their last login will continue to be granted access while offline.
SSSD can also check results by the account expiration policy and the authorizedService attribute.

8.2.6. Configuring Domain Failover

SSSD attempts to connect to machines and to services separately.
When SSSD tries to connect to one of its domain backends, it first tries to resolve the hostname of a given machine. If this resolution attempt fails, the machine is considered offline, and SSSD no longer attempts to connect to this machine for any other service.
If the resolution attempt succeeds, the backend tries to connect to a service on this machine. If the service connection attempt fails, then only this particular service is considered offline and the backend automatically switches over to the next service. The machine is still considered online and might still be tried for another service.
SSSD only tries the first IP address given in the DNS A record. To find multiple servers with a single request, SSSD relies on SRV records.
Connections are retried to offline machines or services every 30 seconds, until SSSD can successfully connect to the backend.

8.2.6.1. Configuring Failover

Configuring failover allows SSSD to switch automatically to a different server if the primary server fails. These servers are entered as a case-insensitive, comma-separated list in the [domain/Name] sections of the /etc/sssd/sssd.conf file. The servers are listed in order of preference. This list can contain any number of servers.
For example, for a native LDAP domain:
ldap_uri = ldap://ldap0.example.com, ldap://ldap1.example.com, ldap://ldap2.example.com
The first entry, ldap://ldap0.example.com, is the primary server. If this server fails, SSSD first attempts to connect to ldap1.example.com and then ldap2.example.com.
If the server parameter is not specified, then SSSD uses service discovery to try to find another server on the network.

Important

The failover servers must be entered as a comma-separated list of values for a single key. If there are multiple keys, SSSD only recognizes the last entry.

8.2.6.2. Using SRV Records with Failover

SSSD supports SRV records in its failover configuration. The SSSD configuration can specify a server that is later resolved into a list of specific servers using SRV requests.
For every service with which to use service discovery, add a special DNS record to the DNS server:
_service._protocol._domain TTL priority weight port hostname
The priority and weight attributes of SRV records provide fine-grained control over which servers to contact first if the primary server fails.
A typical configuration contains multiple such records, each with a different priority for failover and different weights for load balancing.
For more information on SRV records, see RFC 2782.

8.2.7. Managing the SSSD Cache

SSSD can define multiple domains of the same type and different types of domain. SSSD maintains a separate database file for each domain, meaning each domain has its own cache. These cache files are stored in the /var/lib/sss/db/ directory.

8.2.7.1. Purging the SSSD Cache

As LDAP updates are made to the identity provider for the domains, it can be necessary to clear the cache to reload the new information quickly.
The cache purge utility, sss_cache, invalidates records in the SSSD cache for a user, a domain, or a group. Invalidating the current records forces the cache to retrieve the updated records from the identity provider, so changes can be realized quickly.
Most commonly, this is used to clear the cache and update the records for an entire domain:
Example 8.7. Purging Domain Records
[root@server ~]# sss_cache -d LDAP1

If the administrator knows that a specific record (user, group, or netgroup) has been updated, then sss_cache can purge the records for that specific account, and leave the rest of the cache intact.
Example 8.8. Purging a User Record
[root@server ~]# sss_cache -u jsmith

Table 8.8. sss_cache Options
Short Argument Long Argument Description
-d name --domain name Invalidates cache entries for users, groups, and other entries only within the specified domain.
-G --groups Invalidates all group records. If -g is also used, -G takes precedence and -g is ignored.
-g name --group name Invalidates the cache entry for the specified group.
-N --netgroups Invalidates cache entries for all netgroup cache records. If -n is also used, -N takes precedence and -n is ignored.
-n name --netgroup name Invalidates the cache entry for the specified netgroup.
-U --users Invalidates cache entries for all user records. If the -u option is also used, -U takes precedence and -u is ignored.
-u name --user name Invalidates the cache entry for the specified user.

8.2.7.2. Deleting Domain Cache Files

All cache files are named for the domain. For example, for a domain named exampleldap, the cache file is named cache_exampleldap.ldb.
Be careful when you delete a cache file. This operation has significant effects:
  • Deleting the cache file deletes all user data, both identification and cached credentials. Consequently, do not delete a cache file unless the system is online and can authenticate with a username against the domain's servers. Without a credentials cache, offline authentication will fail.
  • If the configuration is changed to reference a different identity provider, SSSD will recognize users from both providers until the cached entries from the original provider time out.
    It is possible to avoid this by purging the cache, but the better option is to use a different domain name for the new provider. When SSSD is restarted, it creates a new cache file with the new name and the old file is ignored.

8.2.8. Configuring OpenSSH to Check SSSD for Cached Keys (TECH PREVIEW)

OpenSSH creates secure, encrypted connections between two systems. One machine authenticates to another machine to allow access; the authentication can be of the machine itself for server connections or of a user on that machine. OpenSSH is described in more detail in Chapter 9, OpenSSH.
This authentication is performed through public-private key pairs that identify the authenticating user or machine. The remote machine or user attempting to access the machine presents a key pair. The local machine then elects whether to trust that remote entity; if it is trusted, the public key for that remote machine is stored in the known_hosts file or for the remote user in authorized_keys. Whenever that remote machine or user attempts to authenticate again, the local system simply checks the known_hosts or authorized_keys file first to see if that remote entity is recognized and trusted. If it is, then access is granted.
The first problem comes in verifying those identities reliably.
The known_hosts file is a triplet of the machine name, its IP address, and its public key:
server.example.com,255.255.255.255 ssh-rsa AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776/AbcdEfg1234ZYX098776=
The known_hosts file can quickly become outdated for a number of different reasons: systems using DHCP cycle through IP addresses, new keys can be re-issued periodically, or virtual machines or services can be brought online and removed. This changes the hostname, IP address, and key triplet.
Administrators have to clean and maintain a current known_hosts file to maintain security. (Or system users get in the habit of simply accepting any machine and key presented, which negates the security benefits of key-based security.)
Additionally, problem for both machines and users is distributing keys in a scalable way. Machines can send their keys are part of establishing an encrypted session, but users have to supply their keys in advance. Simply propagating and then updating keys consistently is a difficult administrative task.
Lastly, SSH key and machine information are only maintained locally. There may be machines or users on the network which are recognized and trusted by some systems and not by others because the known_hosts file has not been updated uniformly.
The goal of SSSD is to server as a credentials cache. This includes working as a credentials cache for SSH public keys for machines and users. OpenSSH is configured to reference SSSD to check for cached keys; SSSD uses Red Hat Linux's Identity Management (IPA) domain as an identity, and IPA actually stores the public keys and host information.

NOTE

Only Linux machines enrolled, or joined, in the IPA domain can use SSSD as a key cache for OpenSSH. Other Unix machines and Windows machines must use the regular authentication mechanisms with the known_hosts file.

8.2.8.1. Configuring OpenSSH to Use SSSD for Host Keys

OpenSSH is configured in either a user-specific configuration file (~/.ssh/config) or a system-wide configuration file (/etc/ssh/ssh_config). The user file has precedence over the system settings and the first obtained value for a paramter is used. The formatting and conventions for this file are covered in Chapter 9, OpenSSH.
In order to manage host keys, SSSD has a tool, sss_ssh_knownhostsproxy, which performs three operations:
  1. Retrieves the public host key from the enrolled Linux system.
  2. Stores the host key in a custom hosts file, .ssh/sss_known_hosts.
  3. Establishes a connection with the host machine, either a socket (the default) or a secure connection.
This tool has the format:
sss_ssh_knownhostsproxy [-d sssd_domain] [-p ssh_port] HOST [PROXY_COMMAND]
Table 8.9. sss_ssh_knownhostsproxy Options
Short Argument Long Argument Description
HOSTNAME Gives the hostname of the host to check and connect to. In the OpenSSH configuration file, this can be a token, %h.
PROXY_COMMAND Passes a proxy command to use to connect to the SSH client. This is similar to running ssh -o ProxyCommand=value. This option is used when running sss_ssh_knownhostsproxy from the command line or through another script, but is not necessary in the OpenSSH configuration file.
-d sssd_domain --domain sssd_domain Only searches for public keys in entries in the specified domain. If not given, SSSD searches for keys in all configured domains.
-p port --port port Uses this port to connect to the SSH client. By default, this is port 22.

To use this SSSD tool, add or edit two parameters to the ssh_config or ~/.ssh/config file:
  • Specify the command to use to connect to the SSH client (ProxyCommand). This is the sss_ssh_knownhostsproxy, with the desired arguments and hostname.
  • Specify the location of the SSSD hosts file, rather than the default known_hosts file (UserKnownHostsFile). The SSSD hosts file is .ssh/sss_known_hosts.
For example, this looks for public keys in the IPA1 SSSD domain and connects over whatever port and host are supplied:
ProxyCommand /usr/bin/sss_ssh_knownhostsproxy -p %p -d IPA1 %h
UserKnownHostsFile2 .ssh/sss_known_hosts

8.2.8.2. Configuring OpenSSH to Use SSSD for User Keys

User keys are stored on a local system in the authorized_keys file for OpenSSH. As with hosts, SSSD can maintain and automatically update a separate cache of user public keys for OpenSSH to refer to. This is kept in the .ssh/sss_authorized_keys file.
OpenSSH is configured in either a user-specific configuration file (~/.ssh/config) or a system-wide configuration file (/etc/ssh/ssh_config). The user file has precedence over the system settings and the first obtained value for a paramter is used. The formatting and conventions for this file are covered in Chapter 9, OpenSSH.
In order to manage user keys, SSSD has a tool, sss_ssh_authorizedkeys, which performs two operations:
  1. Retrieves the user's public key from the user entries in the Identity Management (IPA) domain.
  2. Stores the user key in a custom file, .ssh/sss_authorized_keys, in the standard authorized keys format.
This tool has the format:
sss_ssh_authorizedkeys [-d sssd_domain] USER
Table 8.10. sss_ssh_authorizedkeys Options
Short Argument Long Argument Description
USER Gives the username or account name for which to obtain the public key. In the OpenSSH configuration file, this can be represented by a token, %u.
-d sssd_domain --domain sssd_domain Only searches for public keys in entries in the specified domain. If not given, SSSD searches for keys in all configured domains.

There are two possible options for how to configure OpenSSH to use SSSD for user keys, depending on the SSH deployment:
  • Most commonly, SSH supports the authorized key command. In that case, it is necessary only to specify the command to run to retrieve user keys. For example:
    AuthorizedKeysCommand /usr/bin/sss_ssh_authorizedkeys
  • SSH can also support a public key agent. In that case, give the command to use to retrieve agent keys, including tokens for required arguments (such as the username):
    PubKeyAgent /usr/bin/sss_ssh_authorizedkeys %u

8.2.9. Using NSCD with SSSD

SSSD is not designed to be used with the NSCD daemon. Even though SSSD does not directly conflict with NSCD, using both services can result in unexpected behavior, especially with how long entries are cached.
The most common evidence of a problem is conflicts with NFS. When using Network Manager to manage network connections, it may take several minutes for the network interface to come up. During this time, various services attempt to start. If these services start before the network is up and the DNS servers are available, these services fail to identify the forward or reverse DNS entries they need. These services will read an incorrect or possibly empty resolv.conf file. This file is typically only read once, and so any changes made to this file are not automatically applied. This can cause NFS locking to fail on the machine where the NSCD service is running, unless that service is manually restarted.
To avoid this problem, enable caching for hosts and services in the /etc/nscd.conf file and rely on the SSSD cache for the passwd, group, and netgroup entries.
Change the /etc/nscd.conf file:
enable-cache hosts yes
enable-cache passwd no
enable-cache group no
enable-cache netgroup no
With NSCD answering hosts requests, these entries will be cached by NSCD and returned by NSCD during the boot process. All other entries are handled by SSSD.

8.2.10. Troubleshooting SSSD

8.2.10.1. Setting Debug Logs for SSSD Domains

Each domain sets its own debug log level. Increasing the log level can provide more information about problems with SSSD or with the domain configuration.
To change the log level, set the debug_level parameter for each section in the sssd.conf file for which to produce extra logs. For example:
[domain/LDAP]
enumerate = false
cache_credentials = true
debug_level = 9
Table 8.11. Debug Log Levels
Level Description
0 Fatal failures. Anything that would prevent SSSD from starting up or causes it to cease running.
1 Critical failures. An error that doesn't kill the SSSD, but one that indicates that at least one major feature is not going to work properly.
2 Serious failures. An error announcing that a particular request or operation has failed.
3 Minor failures. These are the errors that would percolate down to cause the operation failure of 2.
4 Configuration settings.
5 Function data.
6 Trace messages for operation functions.
7 Trace messages for internal control functions.
8 Contents of function-internal variables that may be interesting.
9 Extremely low-level tracing information.

NOTE

In versions of SSSD older than 1.8, debug log levels could be set globally in the [sssd] section. Now, each domain and service must configure its own debug log level.
To copy the global SSSD debug log levels into each configuration area in the SSSD configuration file, use the sssd_update_debug_levels.py script.
python /usr/lib/python2.6/site-packages/sssd_update_debug_levels.py

8.2.10.2. Checking SSSD Log Files

SSSD uses a number of log files to report information about its operation, located in the /var/log/sssd/ directory. SSSD produces a log file for each domain, as well as an sssd_pam.log and an sssd_nss.log file.
Additionally, the /var/log/secure file logs authentication failures and the reason for the failure.

8.2.10.3. Problems with SSSD Configuration

SSSD fails to start
SSSD requires that the configuration file be properly set up, with all the required entries, before the daemon will start.
  • SSSD requires at least one properly configured domain before the service will start. Without a domain, attempting to start SSSD returns an error that no domains are configured:
    # sssd -d4
    
    [sssd] [ldb] (3): server_sort:Unable to register control with rootdse!
    [sssd] [confdb_get_domains] (0): No domains configured, fatal error!
    [sssd] [get_monitor_config] (0): No domains configured.
    
    Edit the /etc/sssd/sssd.conf file and create at least one domain.
  • SSSD also requires at least one available service provider before it will start. If the problem is with the service provider configuration, the error message indicates that there are no services configured:
    [sssd] [get_monitor_config] (0): No services configured!
    
    Edit the /etc/sssd/sssd.conf file and configure at least one service provider.

    Important

    SSSD requires that service providers be configured as a comma-separated list in a single services entry in the /etc/sssd/sssd.conf file. If services are listed in multiple entries, only the last entry is recognized by SSSD.
I don't see any groups with 'id' or group members with 'getent group'.
This may be due to an incorrect ldap_schema setting in the [domain/DOMAINNAME] section of sssd.conf.
SSSD supports RFC 2307 and RFC 2307bis schema types. By default, SSSD uses the more common RFC 2307 schema.
The difference between RFC 2307 and RFC 2307bis is the way which group membership is stored in the LDAP server. In an RFC 2307 server, group members are stored as the multi-valued memberuid attribute, which contains the name of the users that are members. In an RFC2307bis server, group members are stored as the multi-valued member or uniqueMember attribute which contains the DN of the user or group that is a member of this group. RFC2307bis allows nested groups to be maintained as well.
If group lookups are not returning any information:
  1. Set ldap_schema to rfc2307bis.
  2. Delete /var/lib/sss/db/cache_DOMAINNAME.ldb.
  3. Restarting SSSD.
If that doesn't work, add this line to sssd.conf:
ldap_group_name = uniqueMember
Then delete the cache and restart SSSD again.
Authentication fails against LDAP.
To perform authentication, SSSD requires that the communication channel be encrypted. This means that if sssd.conf is configured to connect over a standard protocol (ldap://), it attempts to encrypt the communication channel with Start TLS. If sssd.conf is configured to connect over a secure protocol (ldaps://), then SSSD uses SSL.
This means that the LDAP server must be configured to run in SSL or TLS. TLS must be enabled for the standard LDAP port (389) or SSL enabled on the secure LDAPS port (636). With either SSL or TLS, the LDAP server must also be configured with a valid certificate trust.
An invalid certificate trust is one of the most common issues with authenticating against LDAP. If the client does not have proper trust of the LDAP server certificate, it is unable to validate the connection, and SSSD refuses to send the password. The LDAP protocol requires that the password be sent in plaintext to the LDAP server. Sending the password in plaintext over an unencrypted connection is a security problem.
If the certificate is not trusted, a syslog message is written, indicating that TLS encryption could not be started. The certificate configuration can be tested by checking if the LDAP server is accessible apart from SSSD. For example, this tests an anonymous bind over a TLS connection to test.example.com:
$ ldapsearch -x -ZZ -h test.example.com -b dc=example,dc=com
If the certificate trust is not properly configured, the test fails with this error:
ldap_start_tls: Connect error (-11) additional info: TLS error -8179:Unknown code ___f 13
To trust the certificate:
  1. Obtain a copy of the public CA certificate for the certificate authority used to sign the LDAP server certificate and save it to the local system.
  2. Add a line to the sssd.conf file that points to the CA certificate on the filesystem.
    ldap_tls_cacert = /path/to/cacert
  3. If the LDAP server uses a self-signed certificate, remove the ldap_tls_reqcert line from the sssd.conf file.
    This parameter directs SSSD to trust any certificate issued by the CA certificate, which is a security risk with a self-signed CA certificate.
Connecting to LDAP servers on non-standard ports fail.
When running SELinux in enforcing mode, the client's SELinux policy has to be modified to connect to the LDAP server over the non-standard port. For example:
# semanage port -a -t ldap_port_t -p tcp 1389
NSS fails to return user information
This usually means that SSSD cannot connect to the NSS service.
  • Ensure that NSS is running:
    # service sssd status
  • If NSS is running, make sure that the provider is properly configured in the [nss] section of the /etc/sssd/sssd.conf file. Especially check the filter_users and filter_groups attributes.
  • Make sure that NSS is included in the list of services that SSSD uses.
  • Check the configuration in the /etc/nsswitch.conf file.
NSS returns incorrect user information
If searches are returning the incorrect user information, check that there are not conflicting usernames in separate domains. When there are multiple domains, set the use_fully_qualified_domains attribute to true in the /etc/sssd/sssd.conf file. This differentiates between different users in different domains with the same name.
Setting the password for the local SSSD user prompts twice for the password
When attempting to change a local SSSD user's password, it may prompt for the password twice:
[root@clientF11 tmp]# passwd user1000
Changing password for user user1000.
New password:
Retype new password:
New Password:
Reenter new Password:
passwd: all authentication tokens updated successfully.
This is the result of an incorrect PAM configuration. Ensure that the use_authtok option is correctly configured in your /etc/pam.d/system-auth file.

Chapter 9. OpenSSH

SSH (Secure Shell) is a protocol which facilitates secure communications between two systems using a client/server architecture and allows users to log into server host systems remotely. Unlike other remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, rendering the connection difficult for intruders to collect unencrypted passwords.
The ssh program is designed to replace older, less secure terminal applications used to log into remote hosts, such as telnet or rsh. A related program called scp replaces older programs designed to copy files between hosts, such as rcp. Because these older applications do not encrypt passwords transmitted between the client and the server, avoid them whenever possible. Using secure methods to log into remote systems decreases the risks for both the client system and the remote host.
Fedora includes the general OpenSSH package (openssh) as well as the OpenSSH server (openssh-server) and client (openssh-clients) packages. Note that the OpenSSH packages require the OpenSSL package (openssl), which installs several important cryptographic libraries, enabling OpenSSH to provide encrypted communications.

9.1. The SSH Protocol

9.1.1. Why Use SSH?

Potential intruders have a variety of tools at their disposal enabling them to disrupt, intercept, and re-route network traffic in an effort to gain access to a system. In general terms, these threats can be categorized as follows:
Interception of communication between two systems
The attacker can be somewhere on the network between the communicating parties, copying any information passed between them. He may intercept and keep the information, or alter the information and send it on to the intended recipient.
This attack is usually performed using a packet sniffer, a rather common network utility that captures each packet flowing through the network, and analyzes its content.
Impersonation of a particular host
Attacker's system is configured to pose as the intended recipient of a transmission. If this strategy works, the user's system remains unaware that it is communicating with the wrong host.
This attack can be performed using a technique known as DNS poisoning, or via so-called IP spoofing. In the first case, the intruder uses a cracked DNS server to point client systems to a maliciously duplicated host. In the second case, the intruder sends falsified network packets that appear to be from a trusted host.
Both techniques intercept potentially sensitive information and, if the interception is made for hostile reasons, the results can be disastrous. If SSH is used for remote shell login and file copying, these security threats can be greatly diminished. This is because the SSH client and server use digital signatures to verify their identity. Additionally, all communication between the client and server systems is encrypted. Attempts to spoof the identity of either side of a communication does not work, since each packet is encrypted using a key known only by the local and remote systems.

9.1.2. Main Features

The SSH protocol provides the following safeguards:
No one can pose as the intended server
After an initial connection, the client can verify that it is connecting to the same server it had connected to previously.
No one can capture the authentication information
The client transmits its authentication information to the server using strong, 128-bit encryption.
No one can intercept the communication
All data sent and received during a session is transferred using 128-bit encryption, making intercepted transmissions extremely difficult to decrypt and read.
Additionally, it also offers the following options:
It provides secure means to use graphical applications over a network
Using a technique called X11 forwarding, the client can forward X11 (X Window System) applications from the server.
It provides a way to secure otherwise insecure protocols
The SSH protocol encrypts everything it sends and receives. Using a technique called port forwarding, an SSH server can become a conduit to securing otherwise insecure protocols, like POP, and increasing overall system and data security.
It can be used to create a secure channel
The OpenSSH server and client can be configured to create a tunnel similar to a virtual private network for traffic between server and client machines.
It supports the Kerberos authentication
OpenSSH servers and clients can be configured to authenticate using the GSSAPI (Generic Security Services Application Program Interface) implementation of the Kerberos network authentication protocol.

9.1.3. Protocol Versions

Two varieties of SSH currently exist: version 1, and newer version 2. The OpenSSH suite under Fedora uses SSH version 2, which has an enhanced key exchange algorithm not vulnerable to the known exploit in version 1. However, for compatibility reasons, the OpenSSH suite does support version 1 connections as well.

Avoid using SSH version 1

To ensure maximum security for your connection, it is recommended that only SSH version 2-compatible servers and clients are used whenever possible.

9.1.4. Event Sequence of an SSH Connection

The following series of events help protect the integrity of SSH communication between two hosts.
  1. A cryptographic handshake is made so that the client can verify that it is communicating with the correct server.
  2. The transport layer of the connection between the client and remote host is encrypted using a symmetric cipher.
  3. The client authenticates itself to the server.
  4. The remote client interacts with the remote host over the encrypted connection.

9.1.4.1. Transport Layer

The primary role of the transport layer is to facilitate safe and secure communication between the two hosts at the time of authentication and during subsequent communication. The transport layer accomplishes this by handling the encryption and decryption of data, and by providing integrity protection of data packets as they are sent and received. The transport layer also provides compression, speeding the transfer of information.
Once an SSH client contacts a server, key information is exchanged so that the two systems can correctly construct the transport layer. The following steps occur during this exchange:
  • Keys are exchanged
  • The public key encryption algorithm is determined
  • The symmetric encryption algorithm is determined
  • The message authentication algorithm is determined
  • The hash algorithm is determined
During the key exchange, the server identifies itself to the client with a unique host key. If the client has never communicated with this particular server before, the server's host key is unknown to the client and it does not connect. OpenSSH gets around this problem by accepting the server's host key. This is done after the user is notified and has both accepted and verified the new host key. In subsequent connections, the server's host key is checked against the saved version on the client, providing confidence that the client is indeed communicating with the intended server. If, in the future, the host key no longer matches, the user must remove the client's saved version before a connection can occur.

Always verify the integrity of a new SSH server

It is possible for an attacker to masquerade as an SSH server during the initial contact since the local system does not know the difference between the intended server and a false one set up by an attacker. To help prevent this, verify the integrity of a new SSH server by contacting the server administrator before connecting for the first time or in the event of a host key mismatch.
SSH is designed to work with almost any kind of public key algorithm or encoding format. After an initial key exchange creates a hash value used for exchanges and a shared secret value, the two systems immediately begin calculating new keys and algorithms to protect authentication and future data sent over the connection.
After a certain amount of data has been transmitted using a given key and algorithm (the exact amount depends on the SSH implementation), another key exchange occurs, generating another set of hash values and a new shared secret value. Even if an attacker is able to determine the hash and shared secret value, this information is only useful for a limited period of time.

9.1.4.2. Authentication

Once the transport layer has constructed a secure tunnel to pass information between the two systems, the server tells the client the different authentication methods supported, such as using a private key-encoded signature or typing a password. The client then tries to authenticate itself to the server using one of these supported methods.
SSH servers and clients can be configured to allow different types of authentication, which gives each side the optimal amount of control. The server can decide which encryption methods it supports based on its security model, and the client can choose the order of authentication methods to attempt from the available options.

9.1.4.3. Channels

After a successful authentication over the SSH transport layer, multiple channels are opened via a technique called multiplexing[2]. Each of these channels handles communication for different terminal sessions and for forwarded X11 sessions.
Both clients and servers can create a new channel. Each channel is then assigned a different number on each end of the connection. When the client attempts to open a new channel, the clients sends the channel number along with the request. This information is stored by the server and is used to direct communication to that channel. This is done so that different types of sessions do not affect one another and so that when a given session ends, its channel can be closed without disrupting the primary SSH connection.
Channels also support flow-control, which allows them to send and receive data in an orderly fashion. In this way, data is not sent over the channel until the client receives a message that the channel is open.
The client and server negotiate the characteristics of each channel automatically, depending on the type of service the client requests and the way the user is connected to the network. This allows great flexibility in handling different types of remote connections without having to change the basic infrastructure of the protocol.

9.2. An OpenSSH Configuration

In order to perform tasks described in this section, you must have superuser privileges. To obtain them, log in as root by typing:
su -

9.2.1. Configuration Files

There are two different sets of configuration files: those for client programs (that is, ssh, scp, and sftp), and those for the server (the sshd daemon).
System-wide SSH configuration information is stored in the /etc/ssh/ directory. See Table 9.1, “System-wide configuration files” for a description of its content.
Table 9.1. System-wide configuration files
Configuration File Description
/etc/ssh/moduli Contains Diffie-Hellman groups used for the Diffie-Hellman key exchange which is critical for constructing a secure transport layer. When keys are exchanged at the beginning of an SSH session, a shared, secret value is created which cannot be determined by either party alone. This value is then used to provide host authentication.
/etc/ssh/ssh_config The default SSH client configuration file. Note that it is overridden by ~/.ssh/config if it exists.
/etc/ssh/sshd_config The configuration file for the sshd daemon.
/etc/ssh/ssh_host_dsa_key The DSA private key used by the sshd daemon.
/etc/ssh/ssh_host_dsa_key.pub The DSA public key used by the sshd daemon.
/etc/ssh/ssh_host_key The RSA private key used by the sshd daemon for version 1 of the SSH protocol.
/etc/ssh/ssh_host_key.pub The RSA public key used by the sshd daemon for version 1 of the SSH protocol.
/etc/ssh/ssh_host_rsa_key The RSA private key used by the sshd daemon for version 2 of the SSH protocol.
/etc/ssh/ssh_host_rsa_key.pub The RSA public key used by the sshd for version 2 of the SSH protocol.

User-specific SSH configuration information is stored in the user's home directory within the ~/.ssh/ directory. See Table 9.2, “User-specific configuration files” for a description of its content.
Table 9.2. User-specific configuration files
Configuration File Description
~/.ssh/authorized_keys Holds a list of authorized public keys for servers. When the client connects to a server, the server authenticates the client by checking its signed public key stored within this file.
~/.ssh/id_dsa Contains the DSA private key of the user.
~/.ssh/id_dsa.pub The DSA public key of the user.
~/.ssh/id_rsa The RSA private key used by ssh for version 2 of the SSH protocol.
~/.ssh/id_rsa.pub The RSA public key used by ssh for version 2 of the SSH protocol
~/.ssh/identity The RSA private key used by ssh for version 1 of the SSH protocol.
~/.ssh/identity.pub The RSA public key used by ssh for version 1 of the SSH protocol.
~/.ssh/known_hosts Contains DSA host keys of SSH servers accessed by the user. This file is very important for ensuring that the SSH client is connecting the correct SSH server.

Refer to the ssh_config and sshd_config man pages for information concerning the various directives available in the SSH configuration files.

9.2.2. Starting an OpenSSH Server

Make sure you have relevant packages installed

To run an OpenSSH server, you must have the openssh-server and openssh packages installed. Refer to Section 5.2.4, “Installing Packages” for more information on how to install new packages in Fedora.
To start the sshd daemon, type the following at a shell prompt:
systemctl start sshd.service
To stop the running sshd daemon, use the following command:
systemctl stop sshd.service
If you want the daemon to start automatically at the boot time, type:
systemctl enable sshd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.
Note that if you reinstall the system, a new set of identification keys will be created. As a result, clients who had connected to the system with any of the OpenSSH tools before the reinstall will see the following message:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
To prevent this, you can back up the relevant files from the /etc/ssh/ directory (see Table 9.1, “System-wide configuration files” for a complete list), and restore them whenever you reinstall the system.

9.2.3. Requiring SSH for Remote Connections

For SSH to be truly effective, using insecure connection protocols should be prohibited. Otherwise, a user's password may be protected using SSH for one session, only to be captured later while logging in using Telnet. Some services to disable include telnet, rsh, rlogin, and vsftpd.
To make sure these services are not running, type the following commands at a shell prompt:
systemctl stop telnet.service
systemctl stop rsh.service
systemctl stop rlogin.service
systemctl stop vsftpd.service
To disable running these services at startup, type:
systemctl disable telnet.service
systemctl disable rsh.service
systemctl disable rlogin.service
systemctl disable vsftpd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

9.2.4. Using a Key-Based Authentication

To improve the system security even further, you can enforce the key-based authentication by disabling the standard password authentication. To do so, open the /etc/ssh/sshd_config configuration file in a text editor, and change the PasswordAuthentication option as follows:
PasswordAuthentication no
To be able to use ssh, scp, or sftp to connect to the server from a client machine, generate an authorization key pair by following the steps below. Note that keys must be generated for each user separately.
Fedora 20 uses SSH Protocol 2 and RSA keys by default (see Section 9.1.3, “Protocol Versions” for more information).

Do not generate key pairs as root

If you complete the steps as root, only root will be able to use the keys.

Backup your ~/.ssh/ directory

If you reinstall your system and want to keep previously generated key pair, backup the ~/.ssh/ directory. After reinstalling, copy it back to your home directory. This process can be done for all users on your system, including root.

9.2.4.1. Generating Key Pairs

To generate an RSA key pair for version 2 of the SSH protocol, follow these steps:
  1. Generate an RSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t rsa
    Generating public/private rsa key pair.
    Enter file in which to save the key (/home/john/.ssh/id_rsa):
  2. Press Enter to confirm the default location (that is, ~/.ssh/id_rsa) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/id_rsa.
    Your public key has been saved in /home/john/.ssh/id_rsa.pub.
    The key fingerprint is:
    e7:97:c7:e2:0e:f9:0e:fc:c4:d7:cb:e5:31:11:92:14 john@penguin.example.com
    The key's randomart image is:
    +--[ RSA 2048]----+
    |             E.  |
    |            . .  |
    |             o . |
    |              . .|
    |        S .    . |
    |         + o o ..|
    |          * * +oo|
    |           O +..=|
    |           o*  o.|
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 755 ~/.ssh
  5. Copy the content of ~/.ssh/id_rsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
To generate a DSA key pair for version 2 of the SSH protocol, follow these steps:
  1. Generate a DSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t dsa
    Generating public/private dsa key pair.
    Enter file in which to save the key (/home/john/.ssh/id_dsa):
  2. Press Enter to confirm the default location (that is, ~/.ssh/id_dsa) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/id_dsa.
    Your public key has been saved in /home/john/.ssh/id_dsa.pub.
    The key fingerprint is:
    81:a1:91:a8:9f:e8:c5:66:0d:54:f5:90:cc:bc:cc:27 john@penguin.example.com
    The key's randomart image is:
    +--[ DSA 1024]----+
    |   .oo*o.        |
    |  ...o Bo        |
    | .. . + o.       |
    |.  .   E o       |
    | o..o   S        |
    |. o= .           |
    |. +              |
    | .               |
    |                 |
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 775 ~/.ssh
  5. Copy the content of ~/.ssh/id_dsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
To generate an RSA key pair for version 1 of the SSH protocol, follow these steps:
  1. Generate an RSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t rsa1
    Generating public/private rsa1 key pair.
    Enter file in which to save the key (/home/john/.ssh/identity):
  2. Press Enter to confirm the default location (that is, ~/.ssh/identity) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log into your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/identity.
    Your public key has been saved in /home/john/.ssh/identity.pub.
    The key fingerprint is:
    cb:f6:d5:cb:6e:5f:2b:28:ac:17:0c:e4:62:e4:6f:59 john@penguin.example.com
    The key's randomart image is:
    +--[RSA1 2048]----+
    |                 |
    |     . .         |
    |    o o          |
    |     + o E       |
    |    . o S        |
    |       = +   .   |
    |      . = . o . .|
    |       . = o o..o|
    |       .o o  o=o.|
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 755 ~/.ssh
  5. Copy the content of ~/.ssh/identity.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
Refer to Section 9.2.4.2, “Configuring ssh-agent” for information on how to set up your system to remember the passphrase.

Never share your private key

The private key is for your personal use only, and it is important that you never give it to anyone.

9.2.4.2. Configuring ssh-agent

To store your passphrase so that you do not have to enter it each time you initiate a connection with a remote machine, you can use the ssh-agent authentication agent. To save your passphrase for a certain shell prompt, use the following command:
~]$ ssh-add
Enter passphrase for /home/john/.ssh/id_rsa:
Note that when you log out, your passphrase will be forgotten. You must execute the command each time you log in to a virtual console or a terminal window.

9.3. OpenSSH Clients

Make sure you have relevant packages installed

To connect to an OpenSSH server from a client machine, you must have the openssh-clients and openssh packages installed. Refer to Section 5.2.4, “Installing Packages” for more information on how to install new packages in Fedora.

9.3.1. Using the ssh Utility

ssh allows you to log in to a remote machine and execute commands there. It is a secure replacement for the rlogin, rsh, and telnet programs.
Similarly to telnet, to log in to a remote machine named penguin.example.com, type the following command at a shell prompt:
~]$ ssh penguin.example.com
This will log you in with the same username you are using on a local machine. If you want to specify a different one, use a command in the ssh username@hostname form. For example, to log in as john, type:
~]$ ssh john@penguin.example.com
The first time you initiate a connection, you will be presented with a message similar to this:
The authenticity of host 'penguin.example.com' can't be established.
RSA key fingerprint is 94:68:3a:3a:bc:f3:9a:9b:01:5d:b3:07:38:e2:11:0c.
Are you sure you want to continue connecting (yes/no)?
Type yes to confirm. You will see a notice that the server has been added to the list of known hosts, and a prompt asking for your password:
Warning: Permanently added 'penguin.example.com' (RSA) to the list of known hosts.
john@penguin.example.com's password:

Updating the host key of an SSH server

If the SSH server's host key changes, the client notifies the user that the connection cannot proceed until the server's host key is deleted from the ~/.ssh/known_hosts file. To do so, open the file in a text editor, and remove a line containing the remote machine name at the beginning. Before doing this, however, contact the system administrator of the SSH server to verify the server is not compromised.
After entering the password, you will be provided with a shell prompt for the remote machine.
Alternatively, the ssh program can be used to execute a command on the remote machine without logging in to a shell prompt. The syntax for that is ssh [username@]hostname command. For example, if you want to execute the whoami command on penguin.example.com, type:
~]$ ssh john@penguin.example.com whoami
john@penguin.example.com's password:
john
After you enter the correct password, the username will be displayed, and you will return to your local shell prompt.

9.3.2. Using the scp Utility

scp can be used to transfer files between machines over a secure, encrypted connection. In its design, it is very similar to rcp.
To transfer a local file to a remote system, use a command in the following form:
scp localfile username@hostname:remotefile
For example, if you want to transfer taglist.vim to a remote machine named penguin.example.com, type the following at a shell prompt:
~]$ scp taglist.vim john@penguin.example.com:.vim/plugin/taglist.vim
john@penguin.example.com's password:
taglist.vim                                   100%  144KB 144.5KB/s   00:00
Multiple files can be specified at once. To transfer the contents of .vim/plugin/ to the same directory on the remote machine penguin.example.com, type the following command:
~]$ scp .vim/plugin/* john@penguin.example.com:.vim/plugin/
john@penguin.example.com's password:
closetag.vim                                  100%   13KB  12.6KB/s   00:00    
snippetsEmu.vim                               100%   33KB  33.1KB/s   00:00    
taglist.vim                                   100%  144KB 144.5KB/s   00:00
To transfer a remote file to the local system, use the following syntax:
scp username@hostname:remotefile localfile
For instance, to download the .vimrc configuration file from the remote machine, type:
~]$ scp john@penguin.example.com:.vimrc .vimrc
john@penguin.example.com's password:
.vimrc                                        100% 2233     2.2KB/s   00:00

9.3.3. Using the sftp Utility

The sftp utility can be used to open a secure, interactive FTP session. In its design, it is similar to ftp except that it uses a secure, encrypted connection.
To connect to a remote system, use a command in the following form:
sftp username@hostname
For example, to log in to a remote machine named penguin.example.com with john as a username, type:
~]$ sftp john@penguin.example.com
john@penguin.example.com's password:
Connected to penguin.example.com.
sftp>
After you enter the correct password, you will be presented with a prompt. The sftp utility accepts a set of commands similar to those used by ftp (see Table 9.3, “A selection of available sftp commands”).
Table 9.3. A selection of available sftp commands
Command Description
ls [directory] List the content of a remote directory. If none is supplied, a current working directory is used by default.
cd directory Change the remote working directory to directory.
mkdir directory Create a remote directory.
rmdir path Remove a remote directory.
put localfile [remotefile] Transfer localfile to a remote machine.
get remotefile [localfile] Transfer remotefile from a remote machine.

For a complete list of available commands, refer to the sftp man page.

9.4. More Than a Secure Shell

A secure command line interface is just the beginning of the many ways SSH can be used. Given the proper amount of bandwidth, X11 sessions can be directed over an SSH channel. Or, by using TCP/IP forwarding, previously insecure port connections between systems can be mapped to specific SSH channels.

9.4.1. X11 Forwarding

To open an X11 session over an SSH connection, use a command in the following form:
ssh -Y username@hostname
For example, to log in to a remote machine named penguin.example.com with john as a username, type:
~]$ ssh -Y john@penguin.example.com
john@penguin.example.com's password:
When an X program is run from the secure shell prompt, the SSH client and server create a new secure channel, and the X program data is sent over that channel to the client machine transparently.
X11 forwarding can be very useful. For example, X11 forwarding can be used to create a secure, interactive session of the Printer Configuration utility. To do this, connect to the server using ssh and type:
~]$ system-config-printer &
The Printer Configuration Tool will appear, allowing the remote user to safely configure printing on the remote system.

9.4.2. Port Forwarding

SSH can secure otherwise insecure TCP/IP protocols via port forwarding. When using this technique, the SSH server becomes an encrypted conduit to the SSH client.
Port forwarding works by mapping a local port on the client to a remote port on the server. SSH can map any port from the server to any port on the client. Port numbers do not need to match for this technique to work.

Using reserved port numbers

Setting up port forwarding to listen on ports below 1024 requires root level access.
To create a TCP/IP port forwarding channel which listens for connections on the localhost, use a command in the following form:
ssh -L local-port:remote-hostname:remote-port username@hostname
For example, to check email on a server called mail.example.com using POP3 through an encrypted connection, use the following command:
~]$ ssh -L 1100:mail.example.com:110 mail.example.com
Once the port forwarding channel is in place between the client machine and the mail server, direct a POP3 mail client to use port 1100 on the localhost to check for new email. Any requests sent to port 1100 on the client system will be directed securely to the mail.example.com server.
If mail.example.com is not running an SSH server, but another machine on the same network is, SSH can still be used to secure part of the connection. However, a slightly different command is necessary:
~]$ ssh -L 1100:mail.example.com:110 other.example.com
In this example, POP3 requests from port 1100 on the client machine are forwarded through the SSH connection on port 22 to the SSH server, other.example.com. Then, other.example.com connects to port 110 on mail.example.com to check for new email. Note that when using this technique, only the connection between the client system and other.example.com SSH server is secure.
Port forwarding can also be used to get information securely through network firewalls. If the firewall is configured to allow SSH traffic via its standard port (that is, port 22) but blocks access to other ports, a connection between two hosts using the blocked ports is still possible by redirecting their communication over an established SSH connection.

A connection is only as secure as a client system

Using port forwarding to forward connections in this manner allows any user on the client system to connect to that service. If the client system becomes compromised, the attacker also has access to forwarded services.
System administrators concerned about port forwarding can disable this functionality on the server by specifying a No parameter for the AllowTcpForwarding line in /etc/ssh/sshd_config and restarting the sshd service.

9.5. Additional Resources

The OpenSSH and OpenSSL projects are in constant development, and the most up-to-date information for them is available from their websites. The man pages for OpenSSH and OpenSSL tools are also good sources of detailed information.

9.5.1. Installed Documentation

man ssh
The manual page for ssh containing the full documentation on its usage.
man scp
The manual page for scp containing the full documentation on its usage.
man sftp
The manual page for sftp containing the full documentation on its usage.
man sshd
The manual page for sshd containing the full documentation on its usage.
man ssh-keygen
The manual page for ssh-keygen containing the full documentation on its usage.
man ssh_config
The manual page with full description of available SSH client configuration options.
man sshd_config
The manual page with full description of available SSH daemon configuration options.

9.5.2. Useful Websites

http://www.openssh.com/
The OpenSSH home page containing further documentation, frequently asked questions, links to the mailing lists, bug reports, and other useful resources.
http://www.openssl.org/
The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.
http://www.freesshd.com/
Another implementation of an SSH server.


[2] A multiplexed connection consists of several signals being sent over a shared, common medium. With SSH, different channels are sent over a common secure connection.

Part IV. Servers

This part discusses various topics related to servers such as how to set up a Web server or share files and directories over the network.

Table of Contents

10. Web Servers
10.1. The Apache HTTP Server
10.1.1. New Features
10.1.2. Notable Changes
10.1.3. Updating the Configuration
10.1.4. Running the httpd Service
10.1.5. Editing the Configuration Files
10.1.6. Working with Modules
10.1.7. Setting Up Virtual Hosts
10.1.8. Setting Up an SSL Server
10.1.9. Additional Resources
11. Mail Servers
11.1. Email Protocols
11.1.1. Mail Transport Protocols
11.1.2. Mail Access Protocols
11.2. Email Program Classifications
11.2.1. Mail Transport Agent
11.2.2. Mail Delivery Agent
11.2.3. Mail User Agent
11.3. Mail Transport Agents
11.3.1. Postfix
11.3.2. Sendmail
11.3.3. Fetchmail
11.3.4. Mail Transport Agent (MTA) Configuration
11.4. Mail Delivery Agents
11.4.1. Procmail Configuration
11.4.2. Procmail Recipes
11.5. Mail User Agents
11.5.1. Securing Communication
11.6. Additional Resources
11.6.1. Installed Documentation
11.6.2. Useful Websites
11.6.3. Related Books
12. Directory Servers
12.1. OpenLDAP
12.1.1. Introduction to LDAP
12.1.2. Installing the OpenLDAP Suite
12.1.3. Configuring an OpenLDAP Server
12.1.4. Running an OpenLDAP Server
12.1.5. Configuring a System to Authenticate Using OpenLDAP
12.1.6. Additional Resources
13. File and Print Servers
13.1. Samba
13.1.1. Introduction to Samba
13.1.2. Samba Daemons and Related Services
13.1.3. Connecting to a Samba Share
13.1.4. Configuring a Samba Server
13.1.5. Starting and Stopping Samba
13.1.6. Samba Server Types and the smb.conf File
13.1.7. Samba Security Modes
13.1.8. Samba Account Information Databases
13.1.9. Samba Network Browsing
13.1.10. Samba with CUPS Printing Support
13.1.11. Samba Distribution Programs
13.1.12. Additional Resources
13.2. FTP
13.2.1. The File Transfer Protocol
13.2.2. FTP Servers
13.2.3. Files Installed with vsftpd
13.2.4. Starting and Stopping vsftpd
13.2.5. vsftpd Configuration Options
13.2.6. Additional Resources
13.3. Printer Configuration
13.3.1. Starting the Printer Configuration Tool
13.3.2. Starting Printer Setup
13.3.3. Adding a Local Printer
13.3.4. Adding an AppSocket/HP JetDirect printer
13.3.5. Adding an IPP Printer
13.3.6. Adding an LPD/LPR Host or Printer
13.3.7. Adding a Samba (SMB) printer
13.3.8. Selecting the Printer Model and Finishing
13.3.9. Printing a test page
13.3.10. Modifying Existing Printers
13.3.11. Additional Resources
14. Configuring NTP Using the chrony Suite
14.1. Introduction to the chrony Suite
14.1.1. Differences Between ntpd and chronyd
14.1.2. Choosing Between NTP Daemons
14.2. Understanding chrony and Its Configuration
14.2.1. Understanding chronyd
14.2.2. Understanding chronyc
14.2.3. Understanding the chrony Configuration Commands
14.2.4. Security with chronyc
14.3. Using chrony
14.3.1. Checking if chrony is Installed
14.3.2. Installing chrony
14.3.3. Checking the Status of chronyd
14.3.4. Starting chronyd
14.3.5. Stopping chronyd
14.3.6. Checking if chrony is Synchronized
14.3.7. Manually Adjusting the System Clock
14.4. Setting Up chrony for Different Environments
14.4.1. Setting Up chrony for a System Which is Infrequently Connected
14.4.2. Setting Up chrony for a System in an Isolated Network
14.5. Using chronyc
14.5.1. Using chronyc to Control chronyd
14.5.2. Using chronyc for Remote Administration
14.6. Additional Resources
14.6.1. Installed Documentation
14.6.2. Useful Websites
15. Configuring NTP Using ntpd
15.1. Introduction to NTP
15.2. NTP Strata
15.3. Understanding NTP
15.4. Understanding the Drift File
15.5. UTC, Timezones, and DST
15.6. Authentication Options for NTP
15.7. Managing the Time on Virtual Machines
15.8. Understanding Leap Seconds
15.9. Understanding the ntpd Configuration File
15.10. Understanding the ntpd Sysconfig File
15.11. Disabling chrony
15.12. Checking if the NTP Daemon is Installed
15.13. Installing the NTP Daemon (ntpd)
15.14. Checking the Status of NTP
15.15. Configure the Firewall to Allow Incoming NTP Packets
15.15.1. Change the Firewall Settings
15.15.2. Open Ports in the Firewall for NTP Packets
15.16. Configure NTP
15.16.1. Configure Access Control to an NTP Service
15.16.2. Configure Rate Limiting Access to an NTP Service
15.16.3. Adding a Peer Address
15.16.4. Adding a Server Address
15.16.5. Adding a Broadcast or Multicast Server Address
15.16.6. Adding a Manycast Client Address
15.16.7. Adding a Broadcast Client Address
15.16.8. Adding a Manycast Server Address
15.16.9. Adding a Multicast Client Address
15.16.10. Configuring the Burst Option
15.16.11. Configuring the iburst Option
15.16.12. Configuring Symmetric Authentication Using a Key
15.16.13. Configuring the Poll Interval
15.16.14. Configuring Server Preference
15.16.15. Configuring the Time-to-Live for NTP Packets
15.16.16. Configuring the NTP Version to Use
15.17. Configuring the Hardware Clock Update
15.18. Configuring Clock Sources
15.19. Additional Resources
15.19.1. Installed Documentation
15.19.2. Useful Websites
16. Configuring PTP Using ptp4l
16.1. Introduction to PTP
16.1.1. Understanding PTP
16.1.2. Advantages of PTP
16.2. Using PTP
16.2.1. Checking for Driver and Hardware Support
16.2.2. Installing PTP
16.2.3. Starting ptp4l
16.3. Specifying a Configuration File
16.4. Using the PTP Management Client
16.5. Synchronizing the Clocks
16.6. Verifying Time Synchronization
16.7. Serving PTP Time with NTP
16.8. Serving NTP Time with PTP
16.9. Improving Accuracy
16.10. Additional Resources
16.10.1. Installed Documentation
16.10.2. Useful Websites

Chapter 10. Web Servers

HTTP (Hypertext Transfer Protocol) server, or a web server, is a network service that serves content to a client over the web. This typically means web pages, but any other documents can be served as well.

10.1. The Apache HTTP Server

This section focuses on the Apache HTTP Server 2.2, a robust, full-featured open source web server developed by the Apache Software Foundation, that is included in Fedora 20. It describes the basic configuration of the httpd service, and covers advanced topics such as adding server modules, setting up virtual hosts, or configuring the secure HTTP server.
There are important differences between the Apache HTTP Server 2.2 and version 2.0, and if you are upgrading from a previous release of Fedora, you will need to update the httpd service configuration accordingly. This section reviews some of the newly added features, outlines important changes, and guides you through the update of older configuration files.

10.1.1. New Features

The Apache HTTP Server version 2.2 introduces the following enhancements:
  • Improved caching modules, that is, mod_cache and mod_disk_cache.
  • Support for proxy load balancing, that is, the mod_proxy_balancer module.
  • Support for large files on 32-bit architectures, allowing the web server to handle files greater than 2GB.
  • A new structure for authentication and authorization support, replacing the authentication modules provided in previous versions.

10.1.2. Notable Changes

Since version 2.0, few changes have been made to the default httpd service configuration:
  • The following modules are no longer loaded by default: mod_cern_meta and mod_asis.
  • The following module is newly loaded by default: mod_ext_filter.

10.1.3. Updating the Configuration

To update the configuration files from the Apache HTTP Server version 2.0, take the following steps:
  1. Make sure all module names are correct, since they may have changed. Adjust the LoadModule directive for each module that has been renamed.
  2. Recompile all third party modules before attempting to load them. This typically means authentication and authorization modules.
  3. If you use the mod_userdir module, make sure the UserDir directive indicating a directory name (typically public_html) is provided.
  4. If you use the Apache HTTP Secure Server, edit the /etc/httpd/conf.d/ssl.conf to enable the Secure Sockets Layer (SSL) protocol.
Note that you can check the configuration for possible errors by using the following command:
service httpd configtest
For more information on upgrading the Apache HTTP Server configuration from version 2.0 to 2.2, refer to http://httpd.apache.org/docs/2.2/upgrading.html.

10.1.4. Running the httpd Service

This section describes how to start, stop, restart, and check the current status of the Apache HTTP Server. To be able to use the httpd service, make sure you have the httpd installed. You can do so by using the following command as root:
yum install httpd
For more information on the concept of runlevels and how to manage system services in Fedora in general, refer to Chapter 7, Services and Daemons.

10.1.4.1. Starting the Service

To run the httpd service, type the following at a shell prompt as root:
systemctl start httpd.service
If you want the service to start automatically at the boot time, use the following command:
systemctl enable httpd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

Using the secure server

If running the Apache HTTP Server as a secure server, a password may be required after the machine boots if using an encrypted private SSL key.

10.1.4.2. Stopping the Service

To stop the running httpd service, type the following at a shell prompt as root:
systemctl stop httpd.service
To prevent the service from starting automatically at the boot time, type:
systemctl disable httpd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

10.1.4.3. Restarting the Service

There are two different ways to restart the running httpd service:
  1. To restart the service completely, type the following at a shell prompt as root:
    systemctl restart httpd.service
    This will stop the running httpd service, and then start it again. Use this command after installing or removing a dynamically loaded module such as PHP.
  2. To only reload the configuration, as root, type:
    systemctl reload httpd.service
    This will cause the running httpd service to reload the configuration file. Note that any requests being currently processed will be interrupted, which may cause a client browser to display an error message or render a partial page.
  3. To reload the configuration without affecting active requests, run the following command as root:
    service httpd graceful
    This will cause the running httpd service to reload the configuration file. Note that any requests being currently processed will use the old configuration.
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

10.1.4.4. Checking the Service Status

To check whether the service is running, type the following at a shell prompt:
systemctl is-active httpd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

10.1.5. Editing the Configuration Files

When the httpd service is started, by default, it reads the configuration from locations that are listed in Table 10.1, “The httpd service configuration files”.
Table 10.1. The httpd service configuration files
Path Description
/etc/httpd/conf/httpd.conf The main configuration file.
/etc/httpd/conf.d/ An auxiliary directory for configuration files that are included in the main configuration file.

Although the default configuration should be suitable for most situations, it is a good idea to become at least familiar with some of the more important configuration options. Note that for any changes to take effect, the web server has to be restarted first. Refer to Section 10.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.
To check the configuration for possible errors, type the following at a shell prompt:
service httpd configtest
To make the recovery from mistakes easier, it is recommended that you make a copy of the original file before editing it.

10.1.5.1. Common httpd.conf Directives

The following directives are commonly used in the /etc/httpd/conf/httpd.conf configuration file:
<Directory>
The <Directory> directive allows you to apply certain directives to a particular directory only. It takes the following form:
<Directory directory>
  directive
  …
</Directory>
The directory can be either a full path to an existing directory in the local file system, or a wildcard expression.
This directive can be used to configure additional cgi-bin directories for server-side scripts located outside the directory that is specified by ScriptAlias. In this case, the ExecCGI and AddHandler directives must be supplied, and the permissions on the target directory must be set correctly (that is, 0755).
Example 10.1. Using the <Directory> directive
<Directory /var/www/html>
  Options Indexes FollowSymLinks
  AllowOverride None
  Order allow,deny
  Allow from all
</Directory>

<IfDefine>
The IfDefine directive allows you to use certain directives only when a particular parameter is supplied on the command line. It takes the following form:
<IfDefine [!]parameter>
  directive
  …
</IfDefine>
The parameter can be supplied at a shell prompt using the -Dparameter command line option (for example, httpd -DEnableHome). If the optional exclamation mark (that is, !) is present, the enclosed directives are used only when the parameter is not specified.
Example 10.2. Using the <IfDefine> directive
<IfDefine EnableHome>
  UserDir public_html
</IfDefine>

<IfModule>
The <IfModule> directive allows you to use certain directive only when a particular module is loaded. It takes the following form:
<IfModule [!]module>
  directive
  …
</IfModule>
The module can be identified either by its name, or by the file name. If the optional exclamation mark (that is, !) is present, the enclosed directives are used only when the module is not loaded.
Example 10.3. Using the <IfModule> directive
<IfModule mod_disk_cache.c>
  CacheEnable disk /
  CacheRoot /var/cache/mod_proxy
</IfModule>

<Location>
The <Location> directive allows you to apply certain directives to a particular URL only. It takes the following form:
<Location url>
  directive
  …
</Location>
The url can be either a path relative to the directory specified by the DocumentRoot directive (for example, /server-info), or an external URL such as http://example.com/server-info.
Example 10.4. Using the <Location> directive
<Location /server-info>
  SetHandler server-info
  Order deny,allow
  Deny from all
  Allow from .example.com
</Location>

<Proxy>
The <Proxy> directive allows you to apply certain directives to the proxy server only. It takes the following form:
<Proxy pattern>
  directive
  …
</Proxy>
The pattern can be an external URL, or a wildcard expression (for example, http://example.com/*).
Example 10.5. Using the <Proxy> directive
<Proxy *>
  Order deny,allow
  Deny from all
  Allow from .example.com
</Proxy>

<VirtualHost>
The <VirtualHost> directive allows you apply certain directives to particular virtual hosts only. It takes the following form:
<VirtualHost address[:port]…>
  directive
  …
</VirtualHost>
The address can be an IP address, a fully qualified domain name, or a special form as described in Table 10.2, “Available <VirtualHost> options”.
Table 10.2. Available <VirtualHost> options
Option Description
* Represents all IP addresses.
_default_ Represents unmatched IP addresses.

Example 10.6. Using the <VirtualHost> directive
<VirtualHost *:80>
  ServerAdmin webmaster@penguin.example.com
  DocumentRoot /www/docs/penguin.example.com
  ServerName penguin.example.com
  ErrorLog logs/penguin.example.com-error_log
  CustomLog logs/penguin.example.com-access_log common
</VirtualHost>

AccessFileName
The AccessFileName directive allows you to specify the file to be used to customize access control information for each directory. It takes the following form:
AccessFileName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for .htaccess.
For security reasons, the directive is typically followed by the Files tag to prevent the files beginning with .ht from being accessed by web clients. This includes the .htaccess and .htpasswd files.
Example 10.7. Using the AccessFileName directive
AccessFileName .htaccess

<Files ~ "^\.ht">
  Order allow,deny
  Deny from all
  Satisfy All
</Files>

Action
The Action directive allows you to specify a CGI script to be executed when a certain media type is requested. It takes the following form:
Action content-type path
The content-type has to be a valid MIME type such as text/html, image/png, or application/pdf. The path refers to an existing CGI script, and must be relative to the directory specified by the DocumentRoot directive (for example, /cgi-bin/process-image.cgi).
Example 10.8. Using the Action directive
Action image/png /cgi-bin/process-image.cgi

AddDescription
The AddDescription directive allows you to specify a short description to be displayed in server-generated directory listings for a given file. It takes the following form:
AddDescription "description" filename
The description should be a short text enclosed in double quotes (that is, "). The filename can be a full file name, a file extension, or a wildcard expression.
Example 10.9. Using the AddDescription directive
AddDescription "GZIP compressed tar archive" .tgz

AddEncoding
The AddEncoding directive allows you to specify an encoding type for a particular file extension. It takes the following form:
AddEncoding encoding extension
The encoding has to be a valid MIME encoding such as x-compress, x-gzip, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .gz).
This directive is typically used to instruct web browsers to decompress certain file types as they are downloaded.
Example 10.10. Using the AddEncoding directive
AddEncoding x-gzip .gz .tgz

AddHandler
The AddHandler directive allows you to map certain file extensions to a selected handler. It takes the following form:
AddHandler handler extension
The handler has to be a name of previously defined handler. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cgi).
This directive is typically used to treat files with the .cgi extension as CGI scripts regardless of the directory they are in. Additionally, it is also commonly used to process server-parsed HTML and image-map files.
Example 10.11. Using the AddHandler option
AddHandler cgi-script .cgi

AddIcon
The AddIcon directive allows you to specify an icon to be displayed for a particular file in server-generated directory listings. It takes the following form:
AddIcon path pattern
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/folder.png). The pattern can be a file name, a file extension, a wildcard expression, or a special form as described in the following table:
Table 10.3. Available AddIcon options
Option Description
^^DIRECTORY^^ Represents a directory.
^^BLANKICON^^ Represents a blank line.

Example 10.12. Using the AddIcon directive
AddIcon /icons/text.png .txt README

AddIconByEncoding
The AddIconByEncoding directive allows you to specify an icon to be displayed for a particular encoding type in server-generated directory listings. It takes the following form:
AddIconByEncoding path encoding
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/compressed.png). The encoding has to be a valid MIME encoding such as x-compress, x-gzip, etc.
Example 10.13. Using the AddIconByEncoding directive
AddIconByEncoding /icons/compressed.png x-compress x-gzip

AddIconByType
The AddIconByType directive allows you to specify an icon to be displayed for a particular media type in server-generated directory listings. It takes the following form:
AddIconByType path content-type
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/text.png). The content-type has to be either a valid MIME type (for example, text/html or image/png), or a wildcard expression such as text/*, image/*, etc.
Example 10.14. Using the AddIconByType directive
AddIconByType /icons/video.png video/*

AddLanguage
The AddLanguage directive allows you to associate a file extension with a specific language. It takes the following form:
AddLanguage language extension
The language has to be a valid MIME language such as cs, en, or fr. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).
This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.
Example 10.15. Using the AddLanguage directive
AddLanguage cs .cs .cz

AddType
The AddType directive allows you to define or override the media type for a particular file extension. It takes the following form:
AddType content-type extension
The content-type has to be a valid MIME type such as text/html, image/png, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).
Example 10.16. Using the AddType directive
AddType application/x-gzip .gz .tgz

Alias
The Alias directive allows you to refer to files and directories outside the default directory specified by the DocumentRoot directive. It takes the following form:
Alias url-path real-path
The url-path must be relative to the directory specified by the DocumentRoot directive (for example, /images/). The real-path is a full path to a file or directory in the local file system.
This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /icons/ alias is created so that the icons from /var/www/icons/ are displayed in server-generated directory listings.
Example 10.17. Using the Alias directive
Alias /icons/ /var/www/icons/

<Directory "/var/www/icons">
  Options Indexes MultiViews FollowSymLinks
  AllowOverride None
  Order allow,deny
  Allow from all
<Directory>

Allow
The Allow directive allows you to specify which clients have permission to access a given directory. It takes the following form:
Allow from client
The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or all for all clients.
Example 10.18. Using the Allow directive
Allow from 192.168.1.0/255.255.255.0

AllowOverride
The AllowOverride directive allows you to specify which directives in a .htaccess file can override the default configuration. It takes the following form:
AllowOverride type
The type has to be one of the available grouping options as described in Table 10.4, “Available AllowOverride options”.
Table 10.4. Available AllowOverride options
Option Description
All All directives in .htaccess are allowed to override earlier configuration settings.
None No directive in .htaccess is allowed to override earlier configuration settings.
AuthConfig Allows the use of authorization directives such as AuthName, AuthType, or Require.
FileInfo Allows the use of file type, metadata, and mod_rewrite directives such as DefaultType, RequestHeader, or RewriteEngine, as well as the Action directive.
Indexes Allows the use of directory indexing directives such as AddDescription, AddIcon, or FancyIndexing.
Limit Allows the use of host access directives, that is, Allow, Deny, and Order.
Options[=option,…] Allows the use of the Options directive. Additionally, you can provide a comma-separated list of options to customize which options can be set using this directive.

Example 10.19. Using the AllowOverride directive
AllowOverride FileInfo AuthConfig Limit

BrowserMatch
The BrowserMatch directive allows you to modify the server behavior based on the client's web browser type. It takes the following form:
BrowserMatch pattern variable
The pattern is a regular expression to match the User-Agent HTTP header field. The variable is an environment variable that is set when the header field matches the pattern.
By default, this directive is used to deny connections to specific browsers with known issues, and to disable keepalives and HTTP header flushes for browsers that are known to have problems with these actions.
Example 10.20. Using the BrowserMatch directive
BrowserMatch "Mozilla/2" nokeepalive

CacheDefaultExpire
The CacheDefaultExpire option allows you to set how long to cache a document that does not have any expiration date or the date of its last modification specified. It takes the following form:
CacheDefaultExpire time
The time is specified in seconds. The default option is 3600 (that is, one hour).
Example 10.21. Using the CacheDefaultExpire directive
CacheDefaultExpire 3600

CacheDisable
The CacheDisable directive allows you to disable caching of certain URLs. It takes the following form:
CacheDisable path
The path must be relative to the directory specified by the DocumentRoot directive (for example, /files/).
Example 10.22. Using the CacheDisable directive
CacheDisable /temporary

CacheEnable
The CacheEnable directive allows you to specify a cache type to be used for certain URLs. It takes the following form:
CacheEnable type url
The type has to be a valid cache type as described in Table 10.5, “Available cache types”. The url can be a path relative to the directory specified by the DocumentRoot directive (for example, /images/), a protocol (for example, ftp://), or an external URL such as http://example.com/.
Table 10.5. Available cache types
Type Description
mem The memory-based storage manager.
disk The disk-based storage manager.
fd The file descriptor cache.

Example 10.23. Using the CacheEnable directive
CacheEnable disk /

CacheLastModifiedFactor
The CacheLastModifiedFactor directive allows you to customize how long to cache a document that does not have any expiration date specified, but that provides information about the date of its last modification. It takes the following form:
CacheLastModifiedFactor number
The number is a coefficient to be used to multiply the time that passed since the last modification of the document. The default option is 0.1 (that is, one tenth).
Example 10.24. Using the CacheLastModifiedFactor directive
CacheLastModifiedFactor 0.1

CacheMaxExpire
The CacheMaxExpire directive allows you to specify the maximum amount of time to cache a document. It takes the following form:
CacheMaxExpire time
The time is specified in seconds. The default option is 86400 (that is, one day).
Example 10.25. Using the CacheMaxExpire directive
CacheMaxExpire 86400

CacheNegotiatedDocs
The CacheNegotiatedDocs directive allows you to enable caching of the documents that were negotiated on the basis of content. It takes the following form:
CacheNegotiatedDocs option
The option has to be a valid keyword as described in Table 10.6, “Available CacheNegotiatedDocs options”. Since the content-negotiated documents may change over time or because of the input from the requester, the default option is Off.
Table 10.6. Available CacheNegotiatedDocs options
Option Description
On Enables caching the content-negotiated documents.
Off Disables caching the content-negotiated documents.

Example 10.26. Using the CacheNegotiatedDocs directive
CacheNegotiatedDocs On

CacheRoot
The CacheRoot directive allows you to specify the directory to store cache files in. It takes the following form:
CacheRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /var/cache/mod_proxy/.
Example 10.27. Using the CacheRoot directive
CacheRoot /var/cache/mod_proxy

CustomLog
The CustomLog directive allows you to specify the log file name and the log file format. It takes the following form:
CustomLog path format
The path refers to a log file, and must be relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The format has to be either an explicit format string, or a format name that was previously defined using the LogFormat directive.
Example 10.28. Using the CustomLog directive
CustomLog logs/access_log combined

DefaultIcon
The DefaultIcon directive allows you to specify an icon to be displayed for a file in server-generated directory listings when no other icon is associated with it. It takes the following form:
DefaultIcon path
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/unknown.png).
Example 10.29. Using the DefaultIcon directive
DefaultIcon /icons/unknown.png

DefaultType
The DefaultType directive allows you to specify a media type to be used in case the proper MIME type cannot be determined by the server. It takes the following form:
DefaultType content-type
The content-type has to be a valid MIME type such as text/html, image/png, application/pdf, etc.
Example 10.30. Using the DefaultType directive
DefaultType text/plain

Deny
The Deny directive allows you to specify which clients are denied access to a given directory. It takes the following form:
Deny from client
The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or all for all clients.
Example 10.31. Using the Deny directive
Deny from 192.168.1.1

DirectoryIndex
The DirectoryIndex directive allows you to specify a document to be served to a client when a directory is requested (that is, when the URL ends with the / character). It takes the following form:
DirectoryIndex filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for index.html, and index.html.var.
Example 10.32. Using the DirectoryIndex directive
DirectoryIndex index.html index.html.var

DocumentRoot
The DocumentRoot directive allows you to specify the main directory from which the content is served. It takes the following form:
DocumentRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /var/www/html/.
Example 10.33. Using the DocumentRoot directive
DocumentRoot /var/www/html

ErrorDocument
The ErrorDocument directive allows you to specify a document or a message to be displayed as a response to a particular error. It takes the following form:
ErrorDocument error-code action
The error-code has to be a valid code such as 403 (Forbidden), 404 (Not Found), or 500 (Internal Server Error). The action can be either a URL (both local and external), or a message string enclosed in double quotes (that is, ").
Example 10.34. Using the ErrorDocument directive
ErrorDocument 403 "Access Denied"
ErrorDocument 404 /404-not_found.html

ErrorLog
The ErrorLog directive allows you to specify a file to which the server errors are logged. It takes the following form:
ErrorLog path
The path refers to a log file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is logs/error_log
Example 10.35. Using the ErrorLog directive
ErrorLog logs/error_log

ExtendedStatus
The ExtendedStatus directive allows you to enable detailed server status information. It takes the following form:
ExtendedStatus option
The option has to be a valid keyword as described in Table 10.7, “Available ExtendedStatus options”. The default option is Off.
Table 10.7. Available ExtendedStatus options
Option Description
On Enables generating the detailed server status.
Off Disables generating the detailed server status.

Example 10.36. Using the ExtendedStatus directive
ExtendedStatus On

Group
The Group directive allows you to specify the group under which the httpd service will run. It takes the following form:
Group group
The group has to be an existing UNIX group. The default option is apache.
Note that Group is no longer supported inside <VirtualHost>, and has been replaced by the SuexecUserGroup directive.
Example 10.37. Using the Group directive
Group apache

HeaderName
The HeaderName directive allows you to specify a file to be prepended to the beginning of the server-generated directory listing. It takes the following form:
HeaderName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for HEADER.html.
Example 10.38. Using the HeaderName directive
HeaderName HEADER.html

HostnameLookups
The HostnameLookups directive allows you to enable automatic resolving of IP addresses. It takes the following form:
HostnameLookups option
The option has to be a valid keyword as described in Table 10.8, “Available HostnameLookups options”. To conserve resources on the server, the default option is Off.
Table 10.8. Available HostnameLookups options
Option Description
On Enables resolving the IP address for each connection so that the hostname can be logged. However, this also adds a significant processing overhead.
Double Enables performing the double-reverse DNS lookup. In comparison to the above option, this adds even more processing overhead.
Off Disables resolving the IP address for each connection.

Note that when the presence of hostnames is required in server log files, it is often possible to use one of the many log analyzer tools that perform the DNS lookups more efficiently.
Example 10.39. Using the HostnameLookups directive
HostnameLookups Off

Include
The Include directive allows you to include other configuration files. It takes the following form:
Include filename
The filename can be an absolute path, a path relative to the directory specified by the ServerRoot directive, or a wildcard expression. All configuration files from the /etc/httpd/conf.d/ directory are loaded by default.
Example 10.40. Using the Include directive
Include conf.d/*.conf

IndexIgnore
The IndexIgnore directive allows you to specify a list of file names to be omitted from the server-generated directory listings. It takes the following form:
IndexIgnore filename
The filename option can be either a full file name, or a wildcard expression.
Example 10.41. Using the IndexIgnore directive
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

IndexOptions
The IndexOptions directive allows you to customize the behavior of server-generated directory listings. It takes the following form:
IndexOptions option
The option has to be a valid keyword as described in Table 10.9, “Available directory listing options”. The default options are Charset=UTF-8, FancyIndexing, HTMLTable, NameWidth=*, and VersionSort.
Table 10.9. Available directory listing options
Option Description
Charset=encoding Specifies the character set of a generated web page. The encoding has to be a valid character set such as UTF-8 or ISO-8859-2.
Type=content-type Specifies the media type of a generated web page. The content-type has to be a valid MIME type such as text/html or text/plain.
DescriptionWidth=value Specifies the width of the description column. The value can be either a number of characters, or an asterisk (that is, *) to adjust the width automatically.
FancyIndexing Enables advanced features such as different icons for certain files or possibility to re-sort a directory listing by clicking on a column header.
FolderFirst Enables listing directories first, always placing them above files.
HTMLTable Enables the use of HTML tables for directory listings.
IconsAreLinks Enables using the icons as links.
IconHeight=value Specifies an icon height. The value is a number of pixels.
IconWidth=value Specifies an icon width. The value is a number of pixels.
IgnoreCase Enables sorting files and directories in a case-sensitive manner.
IgnoreClient Disables accepting query variables from a client.
NameWidth=value Specifies the width of the file name column. The value can be either a number of characters, or an asterisk (that is, *) to adjust the width automatically.
ScanHTMLTitles Enables parsing the file for a description (that is, the title element) in case it is not provided by the AddDescription directive.
ShowForbidden Enables listing the files with otherwise restricted access.
SuppressColumnSorting Disables re-sorting a directory listing by clicking on a column header.
SuppressDescription Disables reserving a space for file descriptions.
SuppressHTMLPreamble Disables the use of standard HTML preamble when a file specified by the HeaderName directive is present.
SuppressIcon Disables the use of icons in directory listings.
SuppressLastModified Disables displaying the date of the last modification field in directory listings.
SuppressRules Disables the use of horizontal lines in directory listings.
SuppressSize Disables displaying the file size field in directory listings.
TrackModified Enables returning the Last-Modified and ETag values in the HTTP header.
VersionSort Enables sorting files that contain a version number in the expected manner.
XHTML Enables the use of XHTML 1.0 instead of the default HTML 3.2.

Example 10.42. Using the IndexOptions directive
IndexOptions FancyIndexing VersionSort NameWidth=* HTMLTable Charset=UTF-8

KeepAlive
The KeepAlive directive allows you to enable persistent connections. It takes the following form:
KeepAlive option
The option has to be a valid keyword as described in Table 10.10, “Available KeepAlive options”. The default option is Off.
Table 10.10. Available KeepAlive options
Option Description
On Enables the persistent connections. In this case, the server will accept more than one request per connection.
Off Disables the keep-alive connections.

Note that when the persistent connections are enabled, on a busy server, the number of child processes can increase rapidly and eventually reach the maximum limit, slowing down the server significantly. To reduce the risk, it is recommended that you set KeepAliveTimeout to a low number, and monitor the /var/log/httpd/logs/error_log log file carefully.
Example 10.43. Using the KeepAlive directive
KeepAlive Off

KeepAliveTimeout
The KeepAliveTimeout directive allows you to specify the amount of time to wait for another request before closing the connection. It takes the following form:
KeepAliveTimeout time
The time is specified in seconds. The default option is 15.
Example 10.44. Using the KeepAliveTimeout directive
KeepAliveTimeout 15

LanguagePriority
The LanguagePriority directive allows you to customize the precedence of languages. It takes the following form:
LanguagePriority language
The language has to be a valid MIME language such as cs, en, or fr.
This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.
Example 10.45. Using the LanguagePriority directive
LanguagePriority sk cs en

Listen
The Listen directive allows you to specify IP addresses or ports to listen to. It takes the following form:
Listen [ip-address:]port [protocol]
The ip-address is optional and unless supplied, the server will accept incoming requests on a given port from all IP addresses. Since the protocol is determined automatically from the port number, it can be usually omitted. The default option is to listen to port 80.
Note that if the server is configured to listen to a port under 1024, only superuser will be able to start the httpd service.
Example 10.46. Using the Listen directive
Listen 80

LoadModule
The LoadModule directive allows you to load a Dynamic Shared Object (DSO) module. It takes the following form:
LoadModule name path
The name has to be a valid identifier of the required module. The path refers to an existing module file, and must be relative to the directory in which the libraries are placed (that is, /usr/lib/httpd/ on 32-bit and /usr/lib64/httpd/ on 64-bit systems by default).
Refer to Section 10.1.6, “Working with Modules” for more information on the Apache HTTP Server's DSO support.
Example 10.47. Using the LoadModule directive
LoadModule php5_module modules/libphp5.so

LogFormat
The LogFormat directive allows you to specify a log file format. It takes the following form:
LogFormat format name
The format is a string consisting of options as described in Table 10.11, “Common LogFormat options”. The name can be used instead of the format string in the CustomLog directive.
Table 10.11. Common LogFormat options
Option Description
%b Represents the size of the response in bytes.
%h Represents the IP address or hostname of a remote client.
%l Represents the remote log name if supplied. If not, a hyphen (that is, -) is used instead.
%r Represents the first line of the request string as it came from the browser or client.
%s Represents the status code.
%t Represents the date and time of the request.
%u If the authentication is required, it represents the remote user. If not, a hyphen (that is, -) is used instead.
%{field} Represents the content of the HTTP header field. The common options include %{Referer} (the URL of the web page that referred the client to the server) and %{User-Agent} (the type of the web browser making the request).

Example 10.48. Using the LogFormat directive
LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogLevel
The LogLevel directive allows you to customize the verbosity level of the error log. It takes the following form:
LogLevel option
The option has to be a valid keyword as described in Table 10.12, “Available LogLevel options”. The default option is warn.
Table 10.12. Available LogLevel options
Option Description
emerg Only the emergency situations when the server cannot perform its work are logged.
alert All situations when an immediate action is required are logged.
crit All critical conditions are logged.
error All error messages are logged.
warn All warning messages are logged.
notice Even normal, but still significant situations are logged.
info Various informational messages are logged.
debug Various debugging messages are logged.

Example 10.49. Using the LogLevel directive
LogLevel warn

MaxKeepAliveRequests
The MaxKeepAliveRequests directive allows you to specify the maximum number of requests for a persistent connection. It takes the following form:
MaxKeepAliveRequests number
A high number can improve the performance of the server. Note that using 0 allows unlimited number of requests. The default option is 100.
Example 10.50. Using the MaxKeepAliveRequests option
MaxKeepAliveRequests 100

NameVirtualHost
The NameVirtualHost directive allows you to specify the IP address and port number for a name-based virtual host. It takes the following form:
NameVirtualHost ip-address[:port]
The ip-address can be either a full IP address, or an asterisk (that is, *) representing all interfaces. Note that IPv6 addresses have to be enclosed in square brackets (that is, [ and ]). The port is optional.
Name-based virtual hosting allows one Apache HTTP Server to serve different domains without using multiple IP addresses.

Using secure HTTP connections

Name-based virtual hosts only work with non-secure HTTP connections. If using virtual hosts with a secure server, use IP address-based virtual hosts instead.
Example 10.51. Using the NameVirtualHost directive
NameVirtualHost *:80

Options
The Options directive allows you to specify which server features are available in a particular directory. It takes the following form:
Options option
The option has to be a valid keyword as described in Table 10.13, “Available server features”.
Table 10.13. Available server features
Option Description
ExecCGI Enables the execution of CGI scripts.
FollowSymLinks Enables following symbolic links in the directory.
Includes Enables server-side includes.
IncludesNOEXEC Enables server-side includes, but does not allow the execution of commands.
Indexes Enables server-generated directory listings.
MultiViews Enables content-negotiated MultiViews.
SymLinksIfOwnerMatch Enables following symbolic links in the directory when both the link and the target file have the same owner.
All Enables all of the features above with the exception of MultiViews.
None Disables all of the features above.

Example 10.52. Using the Options directive
Options Indexes FollowSymLinks

Order
The Order directive allows you to specify the order in which the Allow and Deny directives are evaluated. It takes the following form:
Order option
The option has to be a valid keyword as described in Table 10.14, “Available Order options”. The default option is allow,deny.
Table 10.14. Available Order options
Option Description
allow,deny Allow directives are evaluated first.
deny,allow Deny directives are evaluated first.

Example 10.53. Using the Order directive
Order allow,deny

PidFile
The PidFile directive allows you to specify a file to which the process ID (PID) of the server is stored. It takes the following form:
PidFile path
The path refers to a pid file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is run/httpd.pid.
Example 10.54. Using the PidFile directive
PidFile run/httpd.pid

ProxyRequests
The ProxyRequests directive allows you to enable forward proxy requests. It takes the following form:
ProxyRequests option
The option has to be a valid keyword as described in Table 10.15, “Available ProxyRequests options”. The default option is Off.
Table 10.15. Available ProxyRequests options
Option Description
On Enables forward proxy requests.
Off Disables forward proxy requests.

Example 10.55. Using the ProxyRequests directive
ProxyRequests On

ReadmeName
The ReadmeName directive allows you to specify a file to be appended to the end of the server-generated directory listing. It takes the following form:
ReadmeName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for README.html.
Example 10.56. Using the ReadmeName directive
ReadmeName README.html

Redirect
The Redirect directive allows you to redirect a client to another URL. It takes the following form:
Redirect [status] path url
The status is optional, and if provided, it has to be a valid keyword as described in Table 10.16, “Available status options”. The path refers to the old location, and must be relative to the directory specified by the DocumentRoot directive (for example, /docs). The url refers to the current location of the content (for example, http://docs.example.com).
Table 10.16. Available status options
Status Description
permanent Indicates that the requested resource has been moved permanently. The 301 (Moved Permanently) status code is returned to a client.
temp Indicates that the requested resource has been moved only temporarily. The 302 (Found) status code is returned to a client.
seeother Indicates that the requested resource has been replaced. The 303 (See Other) status code is returned to a client.
gone Indicates that the requested resource has been removed permanently. The 410 (Gone) status is returned to a client.

Note that for more advanced redirection techniques, you can use the mod_rewrite module that is part of the Apache HTTP Server installation.
Example 10.57. Using the Redirect directive
Redirect permanent /docs http://docs.example.com

ScriptAlias
The ScriptAlias directive allows you to specify the location of CGI scripts. It takes the following form:
ScriptAlias url-path real-path
The url-path must be relative to the directory specified by the DocumentRoot directive (for example, /cgi-bin/). The real-path is a full path to a file or directory in the local file system.
This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /cgi-bin/ alias is created so that the scripts located in the /var/www/cgi-bin/ are accessible.
The ScriptAlias directive is used for security reasons to prevent CGI scripts from being viewed as ordinary text documents.
Example 10.58. Using the ScriptAlias directive
ScriptAlias /cgi-bin/ /var/www/cgi-bin/

<Directory "/var/www/cgi-bin">
  AllowOverride None
  Options None
  Order allow,deny
  Allow from all
</Directory>

ServerAdmin
The ServerAdmin directive allows you to specify the email address of the server administrator to be displayed in server-generated web pages. It takes the following form:
ServerAdmin email
The default option is root@localhost.
This directive is commonly set to webmaster@hostname, where hostname is the address of the server. Once set, alias webmaster to the person responsible for the web server in /etc/aliases, and as superuser, run the newaliases command.
Example 10.59. Using the ServerAdmin directive
ServerAdmin webmaster@penguin.example.com

ServerName
The ServerName directive allows you to specify the hostname and the port number of a web server. It takes the following form:
ServerName hostname[:port]
The hostname has to be a fully qualified domain name (FQDN) of the server. The port is optional, but when supplied, it has to match the number specified by the Listen directive.
When using this directive, make sure that the IP address and server name pair are included in the /etc/hosts file.
Example 10.60. Using the ServerName directive
ServerName penguin.example.com:80

ServerRoot
The ServerRoot directive allows you to specify the directory in which the server operates. It takes the following form:
ServerRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /etc/httpd/.
Example 10.61. Using the ServerRoot directive
ServerRoot /etc/httpd

ServerSignature
The ServerSignature directive allows you to enable displaying information about the server on server-generated documents. It takes the following form:
ServerSignature option
The option has to be a valid keyword as described in Table 10.17, “Available ServerSignature options”. The default option is On.
Table 10.17. Available ServerSignature options
Option Description
On Enables appending the server name and version to server-generated pages.
Off Disables appending the server name and version to server-generated pages.
EMail Enables appending the server name, version, and the email address of the system administrator as specified by the ServerAdmin directive to server-generated pages.

Example 10.62. Using the ServerSignature directive
ServerSignature On

ServerTokens
The ServerTokens directive allows you to customize what information are included in the Server response header. It takes the following form:
ServerTokens option
The option has to be a valid keyword as described in Table 10.18, “Available ServerTokens options”. The default option is OS.
Table 10.18. Available ServerTokens options
Option Description
Prod Includes the product name only (that is, Apache).
Major Includes the product name and the major version of the server (for example, 2).
Minor Includes the product name and the minor version of the server (for example, 2.2).
Min Includes the product name and the minimal version of the server (for example, 2.2.15).
OS Includes the product name, the minimal version of the server, and the type of the operating system it is running on (for example, Red Hat).
Full Includes all the information above along with the list of loaded modules.

Note that for security reasons, it is recommended to reveal as little information about the server as possible.
Example 10.63. Using the ServerTokens directive
ServerTokens Prod

SuexecUserGroup
The SuexecUserGroup directive allows you to specify the user and group under which the CGI scripts will be run. It takes the following form:
SuexecUserGroup user group
The user has to be an existing user, and the group must be a valid UNIX group.
For security reasons, the CGI scripts should not be run with root privileges. Note that in <VirtualHost>, SuexecUserGroup replaces the User and Group directives.
Example 10.64. Using the SuexecUserGroup directive
SuexecUserGroup apache apache

Timeout
The Timeout directive allows you to specify the amount of time to wait for an event before closing a connection. It takes the following form:
Timeout time
The time is specified in seconds. The default option is 60.
Example 10.65. Using the Timeout directive
Timeout 60

TypesConfig
The TypesConfig allows you to specify the location of the MIME types configuration file. It takes the following form:
TypesConfig path
The path refers to an existing MIME types configuration file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is /etc/mime.types.
Note that instead of editing /etc/mime.types, the recommended way to add MIME type mapping to the Apache HTTP Server is to use the AddType directive.
Example 10.66. Using the TypesConfig directive
TypesConfig /etc/mime.types

UseCanonicalName
The UseCanonicalName allows you to specify the way the server refers to itself. It takes the following form:
UseCanonicalName option
The option has to be a valid keyword as described in Table 10.19, “Available UseCanonicalName options”. The default option is Off.
Table 10.19. Available UseCanonicalName options
Option Description
On Enables the use of the name that is specified by the ServerName directive.
Off Disables the use of the name that is specified by the ServerName directive. The hostname and port number provided by the requesting client are used instead.
DNS Disables the use of the name that is specified by the ServerName directive. The hostname determined by a reverse DNS lookup is used instead.

Example 10.67. Using the UseCanonicalName directive
UseCanonicalName Off

User
The User directive allows you to specify the user under which the httpd service will run. It takes the following form:
User user
The user has to be an existing UNIX user. The default option is apache.
For security reasons, the httpd service should not be run with root privileges. Note that User is no longer supported inside <VirtualHost>, and has been replaced by the SuexecUserGroup directive.
Example 10.68. Using the User directive
User apache

UserDir
The UserDir directive allows you to enable serving content from users' home directories. It takes the following form:
UserDir option
The option can be either a name of the directory to look for in user's home directory (typically public_html), or a valid keyword as described in Table 10.20, “Available UserDir options”. The default option is disabled.
Table 10.20. Available UserDir options
Option Description
enabled user Enables serving content from home directories of given users.
disabled [user] Disables serving content from home directories, either for all users, or, if a space separated list of users is supplied, for given users only.

Set the correct permissions

In order for the web server to access the content, the permissions on relevant directories and files must be set correctly. Make sure that all users are able to access the home directories, and that they can access and read the content of the directory specified by the UserDir directive. For example, to allow access to public_html/ in the home directory of user joe, type the following at a shell prompt as root:
~]# chmod a+x /home/joe/
~]# chmod a+rx /home/joe/public_html/
All files in this directory must be set accordingly.
Example 10.69. Using the UserDir directive
UserDir public_html

10.1.5.2. Common ssl.conf Directives

The Secure Sockets Layer (SSL) directives allow you to customize the behavior of the Apache HTTP Secure Server, and in most cases, they are configured appropriately during the installation. Be careful when changing these settings, as incorrect configuration can lead to security vulnerabilities.
The following directive is commonly used in /etc/httpd/conf.d/ssl.conf:
SetEnvIf
The SetEnvIf directive allows you to set environment variables based on the headers of incoming connections. It takes the following form:
SetEnvIf option pattern [!]variable[=value]…
The option can be either a HTTP header field, a previously defined environment variable name, or a valid keyword as described in Table 10.21, “Available SetEnvIf options”. The pattern is a regular expression. The variable is an environment variable that is set when the option matches the pattern. If the optional exclamation mark (that is, !) is present, the variable is removed instead of being set.
Table 10.21. Available SetEnvIf options
Option Description
Remote_Host Refers to the client's hostname.
Remote_Addr Refers to the client's IP address.
Server_Addr Refers to the server's IP address.
Request_Method Refers to the request method (for example, GET).
Request_Protocol Refers to the protocol name and version (for example, HTTP/1.1).
Request_URI Refers to the requested resource.

The SetEnvIf directive is used to disable HTTP keepalives, and to allow SSL to close the connection without a closing notification from the client browser. This is necessary for certain web browsers that do not reliably shut down the SSL connection.
Example 10.70. Using the SetEnvIf directive
SetEnvIf User-Agent ".*MSIE.*" \
         nokeepalive ssl-unclean-shutdown \
         downgrade-1.0 force-response-1.0

Note that for the /etc/httpd/conf.d/ssl.conf file to be present, the mod_ssl needs to be installed. Refer to Section 10.1.8, “Setting Up an SSL Server” for more information on how to install and configure an SSL server.

10.1.5.3. Common Multi-Processing Module Directives

The Multi-Processing Module (MPM) directives allow you to customize the behavior of a particular MPM specific server-pool. Since its characteristics differ depending on which MPM is used, the directives are embedded in IfModule. By default, the server-pool is defined for both the prefork and worker MPMs.
The following MPM directives are commonly used in /etc/httpd/conf/httpd.conf:
MaxClients
The MaxClients directive allows you to specify the maximum number of simultaneously connected clients to process at one time. It takes the following form:
MaxClients number
A high number can improve the performance of the server, although it is not recommended to exceed 256 when using the prefork MPM.
Example 10.71. Using the MaxClients directive
MaxClients 256

MaxRequestsPerChild
The MaxRequestsPerChild directive allows you to specify the maximum number of request a child process can serve before it dies. It takes the following form:
MaxRequestsPerChild number
Setting the number to 0 allows unlimited number of requests.
The MaxRequestsPerChild directive is used to prevent long-lived processes from causing memory leaks.
Example 10.72. Using the MaxRequestsPerChild directive
MaxRequestsPerChild 4000

MaxSpareServers
The MaxSpareServers directive allows you to specify the maximum number of spare child processes. It takes the following form:
MaxSpareServers number
This directive is used by the prefork MPM only.
Example 10.73. Using the MaxSpareServers directive
MaxSpareServers 20

MaxSpareThreads
The MaxSpareThreads directive allows you to specify the maximum number of spare server threads. It takes the following form:
MaxSpareThreads number
The number must be greater than or equal to the sum of MinSpareThreads and ThreadsPerChild. This directive is used by the worker MPM only.
Example 10.74. Using the MaxSpareThreads directive
MaxSpareThreads 75

MinSpareServers
The MinSpareServers directive allows you to specify the minimum number of spare child processes. It takes the following form:
MinSpareServers number
Note that a high number can create a heavy processing load on the server. This directive is used by the prefork MPM only.
Example 10.75. Using the MinSpareServers directive
MinSpareServers 5

MinSpareThreads
The MinSpareThreads directive allows you to specify the minimum number of spare server threads. It takes the following form:
MinSpareThreads number
This directive is used by the worker MPM only.
Example 10.76. Using the MinSpareThreads directive
MinSpareThreads 75

StartServers
The StartServers directive allows you to specify the number of child processes to create when the service is started. It takes the following form:
StartServers number
Since the child processes are dynamically created and terminated according to the current traffic load, it is usually not necessary to change this value.
Example 10.77. Using the StartServers directive
StartServers 8

ThreadsPerChild
The ThreadsPerChild directive allows you to specify the number of threads a child process can create. It takes the following form:
ThreadsPerChild number
This directive is used by the worker MPM only.
Example 10.78. Using the ThreadsPerChild directive
ThreadsPerChild 25

10.1.6. Working with Modules

Being a modular application, the httpd service is distributed along with a number of Dynamic Shared Objects (DSOs), which can be dynamically loaded or unloaded at runtime as necessary. By default, these modules are located in /usr/lib/httpd/modules/ on 32-bit and in /usr/lib64/httpd/modules/ on 64-bit systems.

10.1.6.1. Loading a Module

To load a particular DSO module, use the LoadModule directive as described in Section 10.1.5.1, “Common httpd.conf Directives”. Note that modules provided by a separate package often have their own configuration file in the /etc/httpd/conf.d/ directory.
Example 10.79. Loading the mod_ssl DSO
LoadModule ssl_module modules/mod_ssl.so

Once you are finished, restart the web server to reload the configuration. Refer to Section 10.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.

10.1.6.2. Writing a Module

If you intend to create a new DSO module, make sure you have the httpd-devel package installed. To do so, type the following at a shell prompt as root:
yum install httpd-devel
This package contains the include files, the header files, and the APache eXtenSion (apxs) utility required to compile a module.
Once written, you can build the module with the following command:
apxs -i -a -c module_name.c
If the build was successful, you should be able to load the module the same way as any other module that is distributed with the Apache HTTP Server.

10.1.7. Setting Up Virtual Hosts

The Apache HTTP Server's built in virtual hosting allows the server to provide different information based on which IP address, hostname, or port is being requested.
To create a name-based virtual host, find the virtual host container provided in /etc/httpd/conf/httpd.conf as an example, remove the hash sign (that is, #) from the beginning of each line, and customize the options according to your requirements as shown in Example 10.80, “Sample virtual host configuration”.
Example 10.80. Sample virtual host configuration
NameVirtualHost penguin.example.com:80

<VirtualHost penguin.example.com:80>
    ServerAdmin webmaster@penguin.example.com
    DocumentRoot /www/docs/penguin.example.com
    ServerName penguin.example.com:80
    ErrorLog logs/penguin.example.com-error_log
    CustomLog logs/penguin.example.com-access_log common
</VirtualHost>

Note that ServerName must be a valid DNS name assigned to the machine. The <VirtualHost> container is highly customizable, and accepts most of the directives available within the main server configuration. Directives that are not supported within this container include User and Group, which were replaced by SuexecUserGroup.

Changing the port number

If you configure a virtual host to listen on a non-default port, make sure you update the Listen directive in the global settings section of the /etc/httpd/conf/httpd.conf file accordingly.
To activate a newly created virtual host, the web server has to be restarted first. Refer to Section 10.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.

10.1.8. Setting Up an SSL Server

Secure Sockets Layer (SSL) is a cryptographic protocol that allows a server and a client to communicate securely. Along with its extended and improved version called Transport Layer Security (TLS), it ensures both privacy and data integrity. The Apache HTTP Server in combination with mod_ssl, a module that uses the OpenSSL toolkit to provide the SSL/TLS support, is commonly referred to as the SSL server.
Unlike a regular HTTP connection that can be read and possibly modified by anybody who is able to intercept it, the use of mod_ssl prevents any inspection or modification of the transmitted content. This section provides basic information on how to enable this module in the Apache HTTP Server configuration, and guides you through the process of generating private keys and self-signed certificates.

10.1.8.1. An Overview of Certificates and Security

Secure communication is based on the use of keys. In conventional or symmetric cryptography, both ends of the transaction have the same key they can use to decode each other's transmissions. On the other hand, in public or asymmetric cryptography, two keys co-exist: a private key that is kept a secret, and a public key that is usually shared with the public. While the data encoded with the public key can only be decoded with the private key, data encoded with the private key can in turn only be decoded with the public key.
To provide secure communications using SSL, an SSL server must use a digital certificate signed by a Certificate Authority (CA). The certificate lists various attributes of the server (that is, the server hostname, the name of the company, its location, etc.), and the signature produced using the CA's private key. This signature ensures that a particular certificate authority has issued the certificate, and that the certificate has not been modified in any way.
When a web browser establishes a new SSL connection, it checks the certificate provided by the web server. If the certificate does not have a signature from a trusted CA, or if the hostname listed in the certificate does not match the hostname used to establish the connection, it refuses to communicate with the server and usually presents a user with an appropriate error message.
By default, most web browsers are configured to trust a set of widely used certificate authorities. Because of this, an appropriate CA should be chosen when setting up a secure server, so that target users can trust the connection, otherwise they will be presented with an error message, and will have to accept the certificate manually. Since encouraging users to override certificate errors can allow an attacker to intercept the connection, you should use a trusted CA whenever possible. For more information on this, see Table 10.22, “CA lists for most common web browsers”.
Table 10.22. CA lists for most common web browsers
Web Browser Link
Mozilla Firefox Mozilla root CA list.
Opera The Opera Rootstore.
Internet Explorer Windows root certificate program members.

When setting up an SSL server, you need to generate a certificate request and a private key, and then send the certificate request, proof of the company's identity, and payment to a certificate authority. Once the CA verifies the certificate request and your identity, it will send you a signed certificate you can use with your server. Alternatively, you can create a self-signed certificate that does not contain a CA signature, and thus should be used for testing purposes only.

10.1.8.2. Enabling the mod_ssl Module

If you intend to set up an SSL server, make sure you have the mod_ssl (the mod_ssl module) and openssl (the OpenSSL toolkit) packages installed. To do so, type the following at a shell prompt as root:
yum install mod_ssl openssl
This will create the mod_ssl configuration file at /etc/httpd/conf.d/ssl.conf, which is included in the main Apache HTTP Server configuration file by default. For the module to be loaded, restart the httpd service as described in Section 10.1.4.3, “Restarting the Service”.

10.1.8.3. Using an Existing Key and Certificate

If you have a previously created key and certificate, you can configure the SSL server to use these files instead of generating new ones. There are only two situations where this is not possible:
  1. You are changing the IP address or domain name.
    Certificates are issued for a particular IP address and domain name pair. If one of these values changes, the certificate becomes invalid.
  2. You have a certificate from VeriSign, and you are changing the server software.
    VeriSign, a widely used certificate authority, issues certificates for a particular software product, IP address, and domain name. Changing the software product renders the certificate invalid.
In either of the above cases, you will need to obtain a new certificate. For more information on this topic, refer to Section 10.1.8.4, “Generating a New Key and Certificate”.
If you wish to use an existing key and certificate, move the relevant files to the /etc/pki/tls/private/ and /etc/pki/tls/certs/ directories respectively. You can do so by running the following commands as root:
mv key_file.key /etc/pki/tls/private/hostname.key
mv certificate.crt /etc/pki/tls/certs/hostname.crt
Then add the following lines to the /etc/httpd/conf.d/ssl.conf configuration file:
SSLCertificateFile /etc/pki/tls/certs/hostname.crt
SSLCertificateKeyFile /etc/pki/tls/private/hostname.key
To load the updated configuration, restart the httpd service as described in Section 10.1.4.3, “Restarting the Service”.
Example 10.81. Using a key and certificate from the Red Hat Secure Web Server
~]# mv /etc/httpd/conf/httpsd.key /etc/pki/tls/private/penguin.example.com.key
~]# mv /etc/httpd/conf/httpsd.crt /etc/pki/tls/certs/penguin.example.com.crt

10.1.8.4. Generating a New Key and Certificate

In order to generate a new key and certificate pair, you must to have the crypto-utils package installed in your system. As root, you can install it by typing the following at a shell prompt:
yum install crypto-utils
This package provides a set of tools to generate and manage SSL certificates and private keys, and includes genkey, the Red Hat Keypair Generation utility that will guide you through the key generation process.

Replacing an existing certificate

If the server already has a valid certificate and you are replacing it with a new one, specify a different serial number. This ensures that client browsers are notified of this change, update to this new certificate as expected, and do not fail to access the page. To create a new certificate with a custom serial number, as root, use the following command instead of genkey:
openssl req -x509 -new -set_serial number -key hostname.key -out hostname.crt

Remove a previously created key

If there already is a key file for a particular hostname in your system, genkey will refuse to start. In this case, remove the existing file using the following command as root:
rm /etc/pki/tls/private/hostname.key
To run the utility, as root, run the genkey command followed by the appropriate hostname (for example, penguin.example.com):
genkey hostname
To complete the key and certificate creation, take the following steps:
  1. Review the target locations in which the key and certificate will be stored.
    Running the genkey utility
    Running the genkey utility
    Figure 10.1. Running the genkey utility

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.
  2. Using the Up and down arrow keys, select the suitable key size. Note that while the large key increases the security, it also increases the response time of your server. Because of this, the recommended option is 1024 bits.
    Selecting the key size
    Selecting the key size
    Figure 10.2. Selecting the key size

    Once finished, use the Tab key to select the Next button, and press Enter to initiate the random bits generation process. Depending on the selected key size, this may take some time.
  3. Decide whether you wish to send a certificate request to a certificate authority.
    Generating a certificate request
    Generating a certificate request
    Figure 10.3. Generating a certificate request

    Use the Tab key to select Yes to compose a certificate request, or No to generate a self-signed certificate. Then press Enter to confirm your choice.
  4. Using the Spacebar key, enable ([*]) or disable ([ ]) the encryption of the private key.
    Encrypting the private key
    Encrypting the private key
    Figure 10.4. Encrypting the private key

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.
  5. If you have enabled the private key encryption, enter an adequate passphrase. Note that for security reasons, it is not displayed as you type, and it must be at least five characters long.
    Entering a passphrase
    Entering a passphrase
    Figure 10.5. Entering a passphrase

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.

    Do not forget the passphrase

    Entering the correct passphrase is required in order for the server to start. If you lose it, you will need to generate a new key and certificate.
  6. Customize the certificate details.
    Specifying certificate information
    Specifying certificate information
    Figure 10.6. Specifying certificate information

    Use the Tab key to select the Next button, and press Enter to finish the key generation.
  7. If you have previously enabled the certificate request generation, you will be prompted to send it to a certificate authority.
    Instructions on how to send a certificate request
    Instructions on how to send a certificate request
    Figure 10.7. Instructions on how to send a certificate request

    Press Enter to return to a shell prompt.
Once generated, add the key and certificate locations to the /etc/httpd/conf.d/ssl.conf configuration file:
SSLCertificateFile /etc/pki/tls/certs/hostname.crt
SSLCertificateKeyFile /etc/pki/tls/private/hostname.key
Finally, restart the httpd service as described in Section 10.1.4.3, “Restarting the Service”, so that the updated configuration is loaded.

10.1.9. Additional Resources

To learn more about the Apache HTTP Server, refer to the following resources.

10.1.9.1. Installed Documentation

http://localhost/manual/
The official documentation for the Apache HTTP Server with the full description of its directives and available modules. Note that in order to access this documentation, you must have the httpd-manual package installed, and the web server must be running.
man httpd
The manual page for the httpd service containing the complete list of its command line options.
man genkey
The manual page for genkey containing the full documentation on its usage.

10.1.9.2. Useful Websites

http://httpd.apache.org/
The official website for the Apache HTTP Server with documentation on all the directives and default modules.
http://www.modssl.org/
The official website for the mod_ssl module.
http://www.openssl.org/
The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.

Chapter 11. Mail Servers

Email was born in the 1960s. The mailbox was a file in a user's home directory that was readable only by that user. Primitive mail applications appended new text messages to the bottom of the file, making the user wade through the constantly growing file to find any particular message. This system was only capable of sending messages to users on the same system.
The first network transfer of an electronic mail message file took place in 1971 when a computer engineer named Ray Tomlinson sent a test message between two machines via ARPANET—the precursor to the Internet. Communication via email soon became very popular, comprising 75 percent of ARPANET's traffic in less than two years.
Today, email systems based on standardized network protocols have evolved into some of the most widely used services on the Internet. Fedora offers many advanced applications to serve and access email.
This chapter reviews modern email protocols in use today, and some of the programs designed to send and receive email.

11.1. Email Protocols

Today, email is delivered using a client/server architecture. An email message is created using a mail client program. This program then sends the message to a server. The server then forwards the message to the recipient's email server, where the message is then supplied to the recipient's email client.
To enable this process, a variety of standard network protocols allow different machines, often running different operating systems and using different email programs, to send and receive email.
The following protocols discussed are the most commonly used in the transfer of email.

11.1.1. Mail Transport Protocols

Mail delivery from a client application to the server, and from an originating server to the destination server, is handled by the Simple Mail Transfer Protocol (SMTP).

11.1.1.1. SMTP

The primary purpose of SMTP is to transfer email between mail servers. However, it is critical for email clients as well. To send email, the client sends the message to an outgoing mail server, which in turn contacts the destination mail server for delivery. For this reason, it is necessary to specify an SMTP server when configuring an email client.
Under Fedora, a user can configure an SMTP server on the local machine to handle mail delivery. However, it is also possible to configure remote SMTP servers for outgoing mail.
One important point to make about the SMTP protocol is that it does not require authentication. This allows anyone on the Internet to send email to anyone else or even to large groups of people. It is this characteristic of SMTP that makes junk email or spam possible. Imposing relay restrictions limits random users on the Internet from sending email through your SMTP server, to other servers on the internet. Servers that do not impose such restrictions are called open relay servers.
Fedora provides the Postfix and Sendmail SMTP programs.

11.1.2. Mail Access Protocols

There are two primary protocols used by email client applications to retrieve email from mail servers: the Post Office Protocol (POP) and the Internet Message Access Protocol (IMAP).

11.1.2.1. POP

The default POP server under Fedora is Dovecot and is provided by the dovecot package.

Installing the dovecot package

In order to use Dovecot, first ensure the dovecot package is installed on your system by running, as root:
yum install dovecot
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
When using a POP server, email messages are downloaded by email client applications. By default, most POP email clients are automatically configured to delete the message on the email server after it has been successfully transferred, however this setting usually can be changed.
POP is fully compatible with important Internet messaging standards, such as Multipurpose Internet Mail Extensions (MIME), which allow for email attachments.
POP works best for users who have one system on which to read email. It also works well for users who do not have a persistent connection to the Internet or the network containing the mail server. Unfortunately for those with slow network connections, POP requires client programs upon authentication to download the entire content of each message. This can take a long time if any messages have large attachments.
The most current version of the standard POP protocol is POP3.
There are, however, a variety of lesser-used POP protocol variants:
  • APOPPOP3 with MDS (Monash Directory Service) authentication. An encoded hash of the user's password is sent from the email client to the server rather then sending an unencrypted password.
  • KPOPPOP3 with Kerberos authentication.
  • RPOPPOP3 with RPOP authentication. This uses a per-user ID, similar to a password, to authenticate POP requests. However, this ID is not encrypted, so RPOP is no more secure than standard POP.
For added security, it is possible to use Secure Socket Layer (SSL) encryption for client authentication and data transfer sessions. This can be enabled by using the pop3s service, or by using the /usr/sbin/stunnel application. For more information on securing email communication, refer to Section 11.5.1, “Securing Communication”.

11.1.2.2. IMAP

The default IMAP server under Fedora is Dovecot and is provided by the dovecot package. Refer to Section 11.1.2.1, “POP” for information on how to install Dovecot.
When using an IMAP mail server, email messages remain on the server where users can read or delete them. IMAP also allows client applications to create, rename, or delete mail directories on the server to organize and store email.
IMAP is particularly useful for users who access their email using multiple machines. The protocol is also convenient for users connecting to the mail server via a slow connection, because only the email header information is downloaded for messages until opened, saving bandwidth. The user also has the ability to delete messages without viewing or downloading them.
For convenience, IMAP client applications are capable of caching copies of messages locally, so the user can browse previously read messages when not directly connected to the IMAP server.
IMAP, like POP, is fully compatible with important Internet messaging standards, such as MIME, which allow for email attachments.
For added security, it is possible to use SSL encryption for client authentication and data transfer sessions. This can be enabled by using the imaps service, or by using the /usr/sbin/stunnel program. For more information on securing email communication, refer to Section 11.5.1, “Securing Communication”.
Other free, as well as commercial, IMAP clients and servers are available, many of which extend the IMAP protocol and provide additional functionality.

11.1.2.3. Dovecot

The imap-login and pop3-login processes which implement the IMAP and POP3 protocols are spawned by the master dovecot daemon included in the dovecot package. The use of IMAP and POP is configured through the /etc/dovecot/dovecot.conf configuration file; by default dovecot runs IMAP and POP3 together with their secure versions using SSL. To configure dovecot to use POP, complete the following steps:
  1. Edit the /etc/dovecot/dovecot.conf configuration file to make sure the protocols variable is uncommented (remove the hash sign (#) at the beginning of the line) and contains the pop3 argument. For example:
    protocols = imap imaps pop3 pop3s
    When the protocols variable is left commented out, dovecot will use the default values specified for this variable.
  2. Make that change operational for the current session by running the following command as root:
    systemctl restart dovecot.service
  3. Make that change operational after the next reboot by running the command:
    systemctl enable dovecot.service

    The dovecot service starts the POP3 server

    Please note that dovecot only reports that it started the IMAP server, but also starts the POP3 server.
Unlike SMTP, both IMAP and POP3 require connecting clients to authenticate using a username and password. By default, passwords for both protocols are passed over the network unencrypted.
To configure SSL on dovecot:
  • Edit the /etc/pki/dovecot/dovecot-openssl.conf configuration file as you prefer. However, in a typical installation, this file does not require modification.
  • Rename, move or delete the files /etc/pki/dovecot/certs/dovecot.pem and /etc/pki/dovecot/private/dovecot.pem.
  • Execute the /usr/libexec/dovecot/mkcert.sh script which creates the dovecot self signed certificates. These certificates are copied in the /etc/pki/dovecot/certs and /etc/pki/dovecot/private directories. To implement the changes, restart dovecot by typing the following at a shell prompt as root:
    systemctl restart dovecot.service
More details on dovecot can be found online at http://www.dovecot.org.

11.2. Email Program Classifications

In general, all email applications fall into at least one of three classifications. Each classification plays a specific role in the process of moving and managing email messages. While most users are only aware of the specific email program they use to receive and send messages, each one is important for ensuring that email arrives at the correct destination.

11.2.1. Mail Transport Agent

A Mail Transport Agent (MTA) transports email messages between hosts using SMTP. A message may involve several MTAs as it moves to its intended destination.
While the delivery of messages between machines may seem rather straightforward, the entire process of deciding if a particular MTA can or should accept a message for delivery is quite complicated. In addition, due to problems from spam, use of a particular MTA is usually restricted by the MTA's configuration or the access configuration for the network on which the MTA resides.
Many modern email client programs can act as an MTA when sending email. However, this action should not be confused with the role of a true MTA. The sole reason email client programs are capable of sending email like an MTA is because the host running the application does not have its own MTA. This is particularly true for email client programs on non-UNIX-based operating systems. However, these client programs only send outbound messages to an MTA they are authorized to use and do not directly deliver the message to the intended recipient's email server.
Since Fedora offers two MTAs—Postfix and Sendmail—email client programs are often not required to act as an MTA. Fedora also includes a special purpose MTA called Fetchmail.
For more information on Postfix, Sendmail, and Fetchmail, refer to Section 11.3, “Mail Transport Agents”.

11.2.2. Mail Delivery Agent

A Mail Delivery Agent (MDA) is invoked by the MTA to file incoming email in the proper user's mailbox. In many cases, the MDA is actually a Local Delivery Agent (LDA), such as mail or Procmail.
Any program that actually handles a message for delivery to the point where it can be read by an email client application can be considered an MDA. For this reason, some MTAs (such as Sendmail and Postfix) can fill the role of an MDA when they append new email messages to a local user's mail spool file. In general, MDAs do not transport messages between systems nor do they provide a user interface; MDAs distribute and sort messages on the local machine for an email client application to access.

11.2.3. Mail User Agent

A Mail User Agent (MUA) is synonymous with an email client application. An MUA is a program that, at the very least, allows a user to read and compose email messages. Many MUAs are capable of retrieving messages via the POP or IMAP protocols, setting up mailboxes to store messages, and sending outbound messages to an MTA.
MUAs may be graphical, such as Evolution, or have simple text-based interfaces, such as pine.

11.3. Mail Transport Agents

Fedora offers two primary MTAs: Postfix and Sendmail. Postfix is configured as the default MTA, although it is easy to switch the default MTA to Sendmail. To switch the default MTA to Sendmail, as root, you can either uninstall Postfix or use the following command to switch to Sendmail:
alternatives --config mta
You can also use the following command to enable/disable the desired service:
systemctl enable|disable service.service

11.3.1. Postfix

Originally developed at IBM by security expert and programmer Wietse Venema, Postfix is a Sendmail-compatible MTA that is designed to be secure, fast, and easy to configure.
To improve security, Postfix uses a modular design, where small processes with limited privileges are launched by a master daemon. The smaller, less privileged processes perform very specific tasks related to the various stages of mail delivery and run in a changed root environment to limit the effects of attacks.
Configuring Postfix to accept network connections from hosts other than the local computer takes only a few minor changes in its configuration file. Yet for those with more complex needs, Postfix provides a variety of configuration options, as well as third party add-ons that make it a very versatile and full-featured MTA.
The configuration files for Postfix are human readable and support upward of 250 directives. Unlike Sendmail, no macro processing is required for changes to take effect and the majority of the most commonly used options are described in the heavily commented files.

11.3.1.1. The Default Postfix Installation

The Postfix executable is /usr/sbin/postfix. This daemon launches all related processes needed to handle mail delivery.
Postfix stores its configuration files in the /etc/postfix/ directory. The following is a list of the more commonly used files:
  • access — Used for access control, this file specifies which hosts are allowed to connect to Postfix.
  • main.cf — The global Postfix configuration file. The majority of configuration options are specified in this file.
  • master.cf — Specifies how Postfix interacts with various processes to accomplish mail delivery.
  • transport — Maps email addresses to relay hosts.
The aliases file can be found in the /etc/ directory. This file is shared between Postfix and Sendmail. It is a configurable list required by the mail protocol that describes user ID aliases.

Configuring Postfix as a server for other clients

The default /etc/postfix/main.cf file does not allow Postfix to accept network connections from a host other than the local computer. For instructions on configuring Postfix as a server for other clients, refer to Section 11.3.1.2, “Basic Postfix Configuration”.
Restart the postfix service after changing any options in the configuration files under the /etc/postfix directory in order for those changes to take effect. To do so, run the following command as root:
systemctl restart postfix.service

11.3.1.2. Basic Postfix Configuration

By default, Postfix does not accept network connections from any host other than the local host. Perform the following steps as root to enable mail delivery for other hosts on the network:
  • Edit the /etc/postfix/main.cf file with a text editor, such as vi.
  • Uncomment the mydomain line by removing the hash sign (#), and replace domain.tld with the domain the mail server is servicing, such as example.com.
  • Uncomment the myorigin = $mydomain line.
  • Uncomment the myhostname line, and replace host.domain.tld with the hostname for the machine.
  • Uncomment the mydestination = $myhostname, localhost.$mydomain line.
  • Uncomment the mynetworks line, and replace 168.100.189.0/28 with a valid network setting for hosts that can connect to the server.
  • Uncomment the inet_interfaces = all line.
  • Comment the inet_interfaces = localhost line.
  • Restart the postfix service.
Once these steps are complete, the host accepts outside emails for delivery.
Postfix has a large assortment of configuration options. One of the best ways to learn how to configure Postfix is to read the comments within the /etc/postfix/main.cf configuration file. Additional resources including information about Postfix configuration, SpamAssassin integration, or detailed descriptions of the /etc/postfix/main.cf parameters are available online at http://www.postfix.org/.

11.3.1.3. Using Postfix with LDAP

Postfix can use an LDAP directory as a source for various lookup tables (e.g.: aliases, virtual, canonical, etc.). This allows LDAP to store hierarchical user information and Postfix to only be given the result of LDAP queries when needed. By not storing this information locally, administrators can easily maintain it.
11.3.1.3.1. The /etc/aliases lookup example
The following is a basic example for using LDAP to look up the /etc/aliases file. Make sure your /etc/postfix/main.cf contains the following:
alias_maps = hash:/etc/aliases, ldap:/etc/postfix/ldap-aliases.cf
Create a /etc/postfix/ldap-aliases.cf file if you do not have one created already and make sure it contains the following:
server_host = ldap.example.com
search_base = dc=example, dc=com
where ldap.example.com, example, and com are parameters that need to be replaced with specification of an existing available LDAP server.

The /etc/postfix/ldap-aliases.cf file

The /etc/postfix/ldap-aliases.cf file can specify various parameters, including parameters that enable LDAP SSL and STARTTLS. For more information, refer to the ldap_table(5) man page.
For more information on LDAP, refer to Section 12.1, “OpenLDAP”.

11.3.2. Sendmail

Sendmail's core purpose, like other MTAs, is to safely transfer email among hosts, usually using the SMTP protocol. However, Sendmail is highly configurable, allowing control over almost every aspect of how email is handled, including the protocol used. Many system administrators elect to use Sendmail as their MTA due to its power and scalability.

11.3.2.1. Purpose and Limitations

It is important to be aware of what Sendmail is and what it can do, as opposed to what it is not. In these days of monolithic applications that fulfill multiple roles, Sendmail may seem like the only application needed to run an email server within an organization. Technically, this is true, as Sendmail can spool mail to each users' directory and deliver outbound mail for users. However, most users actually require much more than simple email delivery. Users usually want to interact with their email using an MUA, that uses POP or IMAP, to download their messages to their local machine. Or, they may prefer a Web interface to gain access to their mailbox. These other applications can work in conjunction with Sendmail, but they actually exist for different reasons and can operate separately from one another.
It is beyond the scope of this section to go into all that Sendmail should or could be configured to do. With literally hundreds of different options and rule sets, entire volumes have been dedicated to helping explain everything that can be done and how to fix things that go wrong. Refer to the Section 11.6, “Additional Resources” for a list of Sendmail resources.
This section reviews the files installed with Sendmail by default and reviews basic configuration changes, including how to stop unwanted email (spam) and how to extend Sendmail with the Lightweight Directory Access Protocol (LDAP).

11.3.2.2. The Default Sendmail Installation

In order to use Sendmail, first ensure the sendmail package is installed on your system by running, as root:
yum install sendmail
In order to configure Sendmail, ensure the sendmail-cf package is installed on your system by running, as root:
yum install sendmail-cf
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
Before using Sendmail, the default MTA has to be switched from Postfix. For more information how to switch the default MTA refer to Section 11.3, “Mail Transport Agents”.
The Sendmail executable is /usr/sbin/sendmail.
Sendmail's lengthy and detailed configuration file is /etc/mail/sendmail.cf. Avoid editing the sendmail.cf file directly. To make configuration changes to Sendmail, edit the /etc/mail/sendmail.mc file, back up the original /etc/mail/sendmail.cf, and use the following alternatives to generate a new configuration file:
  • Use the included makefile in /etc/mail/ (~]# make all -C /etc/mail/) to create a new /etc/mail/sendmail.cf configuration file. All other generated files in /etc/mail (db files) will be regenerated if needed. The old makemap commands are still usable. The make command will automatically be used by systemctl start|restart|reload sendmail.service.
  • Alternatively you may use the m4 macro processor to create a new /etc/mail/sendmail.cf. The m4 macro processor is not installed by default. Before using it to create /etc/mail/sendmail.cf, install the m4 package as root:
    yum install m4
More information on configuring Sendmail can be found in Section 11.3.2.3, “Common Sendmail Configuration Changes”.
Various Sendmail configuration files are installed in the /etc/mail/ directory including:
  • access — Specifies which systems can use Sendmail for outbound email.
  • domaintable — Specifies domain name mapping.
  • local-host-names — Specifies aliases for the host.
  • mailertable — Specifies instructions that override routing for particular domains.
  • virtusertable — Specifies a domain-specific form of aliasing, allowing multiple virtual domains to be hosted on one machine.
Several of the configuration files in /etc/mail/, such as access, domaintable, mailertable and virtusertable, must actually store their information in database files before Sendmail can use any configuration changes. To include any changes made to these configurations in their database files, run the following command, as root:
makemap hash /etc/mail/name < /etc/mail/name
where name represents the name of the configuration file to be updated. You may also restart the sendmail service for the changes to take effect by running:
systemctl restart sendmail.service
For example, to have all emails addressed to the example.com domain delivered to , add the following line to the virtusertable file:
@example.com bob@other-example.com
To finalize the change, the virtusertable.db file must be updated:
makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable
Sendmail will create an updated virtusertable.db file containing the new configuration.

11.3.2.3. Common Sendmail Configuration Changes

When altering the Sendmail configuration file, it is best not to edit an existing file, but to generate an entirely new /etc/mail/sendmail.cf file.

Backup the sendmail.cf file before changing its content

Before changing the sendmail.cf file, it is a good idea to create a backup copy.
To add the desired functionality to Sendmail, edit the /etc/mail/sendmail.mc file as root. Once you are finished, restart the sendmail service and, if the m4 package is installed, the m4 macro processor will automatically generate a new sendmail.cf configuration file:
systemctl restart sendmail.service

Configuring Sendmail as a server for other clients

The default sendmail.cf file does not allow Sendmail to accept network connections from any host other than the local computer. To configure Sendmail as a server for other clients, edit the /etc/mail/sendmail.mc file, and either change the address specified in the Addr= option of the DAEMON_OPTIONS directive from 127.0.0.1 to the IP address of an active network device or comment out the DAEMON_OPTIONS directive all together by placing dnl at the beginning of the line. When finished, regenerate /etc/mail/sendmail.cf by restarting the service:
systemctl restart sendmail.service
The default configuration which ships with Fedora works for most SMTP-only sites. However, it does not work for UUCP (UNIX-to-UNIX Copy Protocol) sites. If using UUCP mail transfers, the /etc/mail/sendmail.mc file must be reconfigured and a new /etc/mail/sendmail.cf file must be generated.
Consult the /usr/share/sendmail-cf/README file before editing any files in the directories under the /usr/share/sendmail-cf directory, as they can affect the future configuration of the /etc/mail/sendmail.cf file.

11.3.2.4. Masquerading

One common Sendmail configuration is to have a single machine act as a mail gateway for all machines on the network. For instance, a company may want to have a machine called mail.example.com that handles all of their email and assigns a consistent return address to all outgoing mail.
In this situation, the Sendmail server must masquerade the machine names on the company network so that their return address is user@example.com instead of user@host.example.com.
To do this, add the following lines to /etc/mail/sendmail.mc:
FEATURE(always_add_domain)dnl
FEATURE(`masquerade_entire_domain')dnl
FEATURE(`masquerade_envelope')dnl
FEATURE(`allmasquerade')dnl
MASQUERADE_AS(`bigcorp.com.')dnl
MASQUERADE_DOMAIN(`bigcorp.com.')dnl
MASQUERADE_AS(bigcorp.com)dnl
After generating a new sendmail.cf using the m4 macro processor, this configuration makes all mail from inside the network appear as if it were sent from bigcorp.com.

11.3.2.5. Stopping Spam

Email spam can be defined as unnecessary and unwanted email received by a user who never requested the communication. It is a disruptive, costly, and widespread abuse of Internet communication standards.
Sendmail makes it relatively easy to block new spamming techniques being employed to send junk email. It even blocks many of the more usual spamming methods by default. Main anti-spam features available in sendmail are header checks, relaying denial (default from version 8.9), access database and sender information checks.
For example, forwarding of SMTP messages, also called relaying, has been disabled by default since Sendmail version 8.9. Before this change occurred, Sendmail directed the mail host (x.edu) to accept messages from one party (y.com) and sent them to a different party (z.net). Now, however, Sendmail must be configured to permit any domain to relay mail through the server. To configure relay domains, edit the /etc/mail/relay-domains file and restart Sendmail:
systemctl restart sendmail.service
However, many times users are bombarded with spam from other servers throughout the Internet. In these instances, Sendmail's access control features available through the /etc/mail/access file can be used to prevent connections from unwanted hosts. The following example illustrates how this file can be used to both block and specifically allow access to the Sendmail server:
badspammer.com ERROR:550 "Go away and do not spam us" tux.badspammer.com OK 10.0 RELAY
This example shows that any email sent from badspammer.com is blocked with a 550 RFC-821 compliant error code, with a message sent back to the spammer. Email sent from the tux.badspammer.com sub-domain, is accepted. The last line shows that any email sent from the 10.0.*.* network can be relayed through the mail server.
Because the /etc/mail/access.db file is a database, use the makemap command to update any changes. Do this using the following command as root:
makemap hash /etc/mail/access < /etc/mail/access
Message header analysis allows you to reject mail based on header contents. SMTP servers store information about an email's journey in the message header. As the message travels from one MTA to another, each puts in a Received header above all the other Received headers. It is important to note that this information may be altered by spammers.
The above examples only represent a small part of what Sendmail can do in terms of allowing or blocking access. Refer to the /usr/share/sendmail-cf/README for more information and examples.
Since Sendmail calls the Procmail MDA when delivering mail, it is also possible to use a spam filtering program, such as SpamAssassin, to identify and file spam for users. Refer to Section 11.4.2.6, “Spam Filters” for more information about using SpamAssassin.

11.3.2.6. Using Sendmail with LDAP

Using LDAP is a very quick and powerful way to find specific information about a particular user from a much larger group. For example, an LDAP server can be used to look up a particular email address from a common corporate directory by the user's last name. In this kind of implementation, LDAP is largely separate from Sendmail, with LDAP storing the hierarchical user information and Sendmail only being given the result of LDAP queries in pre-addressed email messages.
However, Sendmail supports a much greater integration with LDAP, where it uses LDAP to replace separately maintained files, such as /etc/aliases and /etc/mail/virtusertables, on different mail servers that work together to support a medium- to enterprise-level organization. In short, LDAP abstracts the mail routing level from Sendmail and its separate configuration files to a powerful LDAP cluster that can be leveraged by many different applications.
The current version of Sendmail contains support for LDAP. To extend the Sendmail server using LDAP, first get an LDAP server, such as OpenLDAP, running and properly configured. Then edit the /etc/mail/sendmail.mc to include the following:
LDAPROUTE_DOMAIN('yourdomain.com')dnl
FEATURE('ldap_routing')dnl

Advanced configuration

This is only for a very basic configuration of Sendmail with LDAP. The configuration can differ greatly from this depending on the implementation of LDAP, especially when configuring several Sendmail machines to use a common LDAP server.
Consult /usr/share/sendmail-cf/README for detailed LDAP routing configuration instructions and examples.
Next, recreate the /etc/mail/sendmail.cf file by running the m4 macro processor and again restarting Sendmail. Refer to Section 11.3.2.3, “Common Sendmail Configuration Changes” for instructions.
For more information on LDAP, refer to Section 12.1, “OpenLDAP”.

11.3.3. Fetchmail

Fetchmail is an MTA which retrieves email from remote servers and delivers it to the local MTA. Many users appreciate the ability to separate the process of downloading their messages located on a remote server from the process of reading and organizing their email in an MUA. Designed with the needs of dial-up users in mind, Fetchmail connects and quickly downloads all of the email messages to the mail spool file using any number of protocols, including POP3 and IMAP. It can even forward email messages to an SMTP server, if necessary.

Installing the fetchmail package

In order to use Fetchmail, first ensure the fetchmail package is installed on your system by running, as root:
yum install fetchmail
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
Fetchmail is configured for each user through the use of a .fetchmailrc file in the user's home directory. If it does not already exist, create the .fetchmailrc file in your home directory
Using preferences in the .fetchmailrc file, Fetchmail checks for email on a remote server and downloads it. It then delivers it to port 25 on the local machine, using the local MTA to place the email in the correct user's spool file. If Procmail is available, it is launched to filter the email and place it in a mailbox so that it can be read by an MUA.

11.3.3.1. Fetchmail Configuration Options

Although it is possible to pass all necessary options on the command line to check for email on a remote server when executing Fetchmail, using a .fetchmailrc file is much easier. Place any desired configuration options in the .fetchmailrc file for those options to be used each time the fetchmail command is issued. It is possible to override these at the time Fetchmail is run by specifying that option on the command line.
A user's .fetchmailrc file contains three classes of configuration options:
  • global options — Gives Fetchmail instructions that control the operation of the program or provide settings for every connection that checks for email.
  • server options — Specifies necessary information about the server being polled, such as the hostname, as well as preferences for specific email servers, such as the port to check or number of seconds to wait before timing out. These options affect every user using that server.
  • user options — Contains information, such as username and password, necessary to authenticate and check for email using a specified email server.
Global options appear at the top of the .fetchmailrc file, followed by one or more server options, each of which designate a different email server that Fetchmail should check. User options follow server options for each user account checking that email server. Like server options, multiple user options may be specified for use with a particular server as well as to check multiple email accounts on the same server.
Server options are called into service in the .fetchmailrc file by the use of a special option verb, poll or skip, that precedes any of the server information. The poll action tells Fetchmail to use this server option when it is run, which checks for email using the specified user options. Any server options after a skip action, however, are not checked unless this server's hostname is specified when Fetchmail is invoked. The skip option is useful when testing configurations in the .fetchmailrc file because it only checks skipped servers when specifically invoked, and does not affect any currently working configurations.
The following is a sample example of a .fetchmailrc file:
set postmaster "user1"
set bouncemail

poll pop.domain.com proto pop3
    user 'user1' there with password 'secret' is user1 here

poll mail.domain2.com
    user 'user5' there with password 'secret2' is user1 here
    user 'user7' there with password 'secret3' is user1 here
In this example, the global options specify that the user is sent email as a last resort (postmaster option) and all email errors are sent to the postmaster instead of the sender (bouncemail option). The set action tells Fetchmail that this line contains a global option. Then, two email servers are specified, one set to check using POP3, the other for trying various protocols to find one that works. Two users are checked using the second server option, but all email found for any user is sent to user1's mail spool. This allows multiple mailboxes to be checked on multiple servers, while appearing in a single MUA inbox. Each user's specific information begins with the user action.

Omitting the password from the configuration

Users are not required to place their password in the .fetchmailrc file. Omitting the with password 'password' section causes Fetchmail to ask for a password when it is launched.
Fetchmail has numerous global, server, and local options. Many of these options are rarely used or only apply to very specific situations. The fetchmail man page explains each option in detail, but the most common ones are listed in the following three sections.

11.3.3.2. Global Options

Each global option should be placed on a single line after a set action.
  • daemon seconds — Specifies daemon-mode, where Fetchmail stays in the background. Replace seconds with the number of seconds Fetchmail is to wait before polling the server.
  • postmaster — Specifies a local user to send mail to in case of delivery problems.
  • syslog — Specifies the log file for errors and status messages. By default, this is /var/log/maillog.

11.3.3.3. Server Options

Server options must be placed on their own line in .fetchmailrc after a poll or skip action.
  • auth auth-type — Replace auth-type with the type of authentication to be used. By default, password authentication is used, but some protocols support other types of authentication, including kerberos_v5, kerberos_v4, and ssh. If the any authentication type is used, Fetchmail first tries methods that do not require a password, then methods that mask the password, and finally attempts to send the password unencrypted to authenticate to the server.
  • interval number — Polls the specified server every number of times that it checks for email on all configured servers. This option is generally used for email servers where the user rarely receives messages.
  • port port-number — Replace port-number with the port number. This value overrides the default port number for the specified protocol.
  • proto protocol — Replace protocol with the protocol, such as pop3 or imap, to use when checking for messages on the server.
  • timeout seconds — Replace seconds with the number of seconds of server inactivity after which Fetchmail gives up on a connection attempt. If this value is not set, a default of 300 seconds is assumed.

11.3.3.4. User Options

User options may be placed on their own lines beneath a server option or on the same line as the server option. In either case, the defined options must follow the user option (defined below).
  • fetchall — Orders Fetchmail to download all messages in the queue, including messages that have already been viewed. By default, Fetchmail only pulls down new messages.
  • fetchlimit number — Replace number with the number of messages to be retrieved before stopping.
  • flush — Deletes all previously viewed messages in the queue before retrieving new messages.
  • limit max-number-bytes — Replace max-number-bytes with the maximum size in bytes that messages are allowed to be when retrieved by Fetchmail. This option is useful with slow network links, when a large message takes too long to download.
  • password 'password' — Replace password with the user's password.
  • preconnect "command" — Replace command with a command to be executed before retrieving messages for the user.
  • postconnect "command" — Replace command with a command to be executed after retrieving messages for the user.
  • ssl — Activates SSL encryption.
  • user "username" — Replace username with the username used by Fetchmail to retrieve messages. This option must precede all other user options.

11.3.3.5. Fetchmail Command Options

Most Fetchmail options used on the command line when executing the fetchmail command mirror the .fetchmailrc configuration options. In this way, Fetchmail may be used with or without a configuration file. These options are not used on the command line by most users because it is easier to leave them in the .fetchmailrc file.
There may be times when it is desirable to run the fetchmail command with other options for a particular purpose. It is possible to issue command options to temporarily override a .fetchmailrc setting that is causing an error, as any options specified at the command line override configuration file options.

11.3.3.6. Informational or Debugging Options

Certain options used after the fetchmail command can supply important information.
  • --configdump — Displays every possible option based on information from .fetchmailrc and Fetchmail defaults. No email is retrieved for any users when using this option.
  • -s — Executes Fetchmail in silent mode, preventing any messages, other than errors, from appearing after the fetchmail command.
  • -v — Executes Fetchmail in verbose mode, displaying every communication between Fetchmail and remote email servers.
  • -V — Displays detailed version information, lists its global options, and shows settings to be used with each user, including the email protocol and authentication method. No email is retrieved for any users when using this option.

11.3.3.7. Special Options

These options are occasionally useful for overriding defaults often found in the .fetchmailrc file.
  • -a — Fetchmail downloads all messages from the remote email server, whether new or previously viewed. By default, Fetchmail only downloads new messages.
  • -k — Fetchmail leaves the messages on the remote email server after downloading them. This option overrides the default behavior of deleting messages after downloading them.
  • -l max-number-bytes — Fetchmail does not download any messages over a particular size and leaves them on the remote email server.
  • --quit — Quits the Fetchmail daemon process.
More commands and .fetchmailrc options can be found in the fetchmail man page.

11.3.4. Mail Transport Agent (MTA) Configuration

A Mail Transport Agent (MTA) is essential for sending email. A Mail User Agent (MUA) such as Evolution, Thunderbird, and Mutt, is used to read and compose email. When a user sends an email from an MUA, the message is handed off to the MTA, which sends the message through a series of MTAs until it reaches its destination.
Even if a user does not plan to send email from the system, some automated tasks or system programs might use the /bin/mail command to send email containing log messages to the root user of the local system.
Fedora 20 provides two MTAs: Postfix and Sendmail. If both are installed, Postfix is the default MTA.

11.4. Mail Delivery Agents

Fedora includes two primary MDAs, Procmail and mail. Both of the applications are considered LDAs and both move email from the MTA's spool file into the user's mailbox. However, Procmail provides a robust filtering system.
This section details only Procmail. For information on the mail command, consult its man page (man mail).
Procmail delivers and filters email as it is placed in the mail spool file of the localhost. It is powerful, gentle on system resources, and widely used. Procmail can play a critical role in delivering email to be read by email client applications.
Procmail can be invoked in several different ways. Whenever an MTA places an email into the mail spool file, Procmail is launched. Procmail then filters and files the email for the MUA and quits. Alternatively, the MUA can be configured to execute Procmail any time a message is received so that messages are moved into their correct mailboxes. By default, the presence of /etc/procmailrc or of a ~/.procmailrc file (also called an rc file) in the user's home directory invokes Procmail whenever an MTA receives a new message.
By default, no system-wide rc files exist in the /etc/ directory and no .procmailrc files exist in any user's home directory. Therefore, to use Procmail, each user must construct a .procmailrc file with specific environment variables and rules.
Whether Procmail acts upon an email message depends upon whether the message matches a specified set of conditions or recipes in the rc file. If a message matches a recipe, then the email is placed in a specified file, is deleted, or is otherwise processed.
When Procmail starts, it reads the email message and separates the body from the header information. Next, Procmail looks for a /etc/procmailrc file and rc files in the /etc/procmailrcs directory for default, system-wide, Procmail environmental variables and recipes. Procmail then searches for a .procmailrc file in the user's home directory. Many users also create additional rc files for Procmail that are referred to within the .procmailrc file in their home directory.

11.4.1. Procmail Configuration

The Procmail configuration file contains important environmental variables. These variables specify things such as which messages to sort and what to do with the messages that do not match any recipes.
These environmental variables usually appear at the beginning of the ~/.procmailrc file in the following format:
env-variable="value"
In this example, env-variable is the name of the variable and value defines the variable.
There are many environment variables not used by most Procmail users and many of the more important environment variables are already defined by a default value. Most of the time, the following variables are used:
  • DEFAULT — Sets the default mailbox where messages that do not match any recipes are placed.
    The default DEFAULT value is the same as $ORGMAIL.
  • INCLUDERC — Specifies additional rc files containing more recipes for messages to be checked against. This breaks up the Procmail recipe lists into individual files that fulfill different roles, such as blocking spam and managing email lists, that can then be turned off or on by using comment characters in the user's ~/.procmailrc file.
    For example, lines in a user's .procmailrc file may look like this:
    MAILDIR=$HOME/Msgs INCLUDERC=$MAILDIR/lists.rc INCLUDERC=$MAILDIR/spam.rc
    To turn off Procmail filtering of email lists but leaving spam control in place, comment out the first INCLUDERC line with a hash sign (#).
  • LOCKSLEEP — Sets the amount of time, in seconds, between attempts by Procmail to use a particular lockfile. The default is 8 seconds.
  • LOCKTIMEOUT — Sets the amount of time, in seconds, that must pass after a lockfile was last modified before Procmail assumes that the lockfile is old and can be deleted. The default is 1024 seconds.
  • LOGFILE — The file to which any Procmail information or error messages are written.
  • MAILDIR — Sets the current working directory for Procmail. If set, all other Procmail paths are relative to this directory.
  • ORGMAIL — Specifies the original mailbox, or another place to put the messages if they cannot be placed in the default or recipe-required location.
    By default, a value of /var/spool/mail/$LOGNAME is used.
  • SUSPEND — Sets the amount of time, in seconds, that Procmail pauses if a necessary resource, such as swap space, is not available.
  • SWITCHRC — Allows a user to specify an external file containing additional Procmail recipes, much like the INCLUDERC option, except that recipe checking is actually stopped on the referring configuration file and only the recipes on the SWITCHRC-specified file are used.
  • VERBOSE — Causes Procmail to log more information. This option is useful for debugging.
Other important environmental variables are pulled from the shell, such as LOGNAME, which is the login name; HOME, which is the location of the home directory; and SHELL, which is the default shell.
A comprehensive explanation of all environments variables, as well as their default values, is available in the procmailrc man page.

11.4.2. Procmail Recipes

New users often find the construction of recipes the most difficult part of learning to use Procmail. To some extent, this is understandable, as recipes do their message matching using regular expressions, which is a particular format used to specify qualifications for a matching string. However, regular expressions are not very difficult to construct and even less difficult to understand when read. Additionally, the consistency of the way Procmail recipes are written, regardless of regular expressions, makes it easy to learn by example. To see example Procmail recipes, refer to Section 11.4.2.5, “Recipe Examples”.
Procmail recipes take the following form:
:0flags: lockfile-name * special-condition-character
        condition-1 * special-condition-character
        condition-2 * special-condition-character
        condition-N
        special-action-character
        action-to-perform
The first two characters in a Procmail recipe are a colon and a zero. Various flags can be placed after the zero to control how Procmail processes the recipe. A colon after the flags section specifies that a lockfile is created for this message. If a lockfile is created, the name can be specified by replacing lockfile-name .
A recipe can contain several conditions to match against the message. If it has no conditions, every message matches the recipe. Regular expressions are placed in some conditions to facilitate message matching. If multiple conditions are used, they must all match for the action to be performed. Conditions are checked based on the flags set in the recipe's first line. Optional special characters placed after the asterisk character (*) can further control the condition.
The action-to-perform argument specifies the action taken when the message matches one of the conditions. There can only be one action per recipe. In many cases, the name of a mailbox is used here to direct matching messages into that file, effectively sorting the email. Special action characters may also be used before the action is specified. Refer to Section 11.4.2.4, “Special Conditions and Actions” for more information.

11.4.2.1. Delivering vs. Non-Delivering Recipes

The action used if the recipe matches a particular message determines whether it is considered a delivering or non-delivering recipe. A delivering recipe contains an action that writes the message to a file, sends the message to another program, or forwards the message to another email address. A non-delivering recipe covers any other actions, such as a nesting block. A nesting block is a set of actions, contained in braces { }, that are performed on messages which match the recipe's conditions. Nesting blocks can be nested inside one another, providing greater control for identifying and performing actions on messages.
When messages match a delivering recipe, Procmail performs the specified action and stops comparing the message against any other recipes. Messages that match non-delivering recipes continue to be compared against other recipes.

11.4.2.2. Flags

Flags are essential to determine how or if a recipe's conditions are compared to a message. The following flags are commonly used:
  • A — Specifies that this recipe is only used if the previous recipe without an A or a flag also matched this message.
  • a — Specifies that this recipe is only used if the previous recipe with an A or a flag also matched this message and was successfully completed.
  • B — Parses the body of the message and looks for matching conditions.
  • b — Uses the body in any resulting action, such as writing the message to a file or forwarding it. This is the default behavior.
  • c — Generates a carbon copy of the email. This is useful with delivering recipes, since the required action can be performed on the message and a copy of the message can continue being processed in the rc files.
  • D — Makes the egrep comparison case-sensitive. By default, the comparison process is not case-sensitive.
  • E — While similar to the A flag, the conditions in the recipe are only compared to the message if the immediately preceding the recipe without an E flag did not match. This is comparable to an else action.
  • e — The recipe is compared to the message only if the action specified in the immediately preceding recipe fails.
  • f — Uses the pipe as a filter.
  • H — Parses the header of the message and looks for matching conditions. This is the default behavior.
  • h — Uses the header in a resulting action. This is the default behavior.
  • w — Tells Procmail to wait for the specified filter or program to finish, and reports whether or not it was successful before considering the message filtered.
  • W — Is identical to w except that "Program failure" messages are suppressed.
For a detailed list of additional flags, refer to the procmailrc man page.

11.4.2.3. Specifying a Local Lockfile

Lockfiles are very useful with Procmail to ensure that more than one process does not try to alter a message simultaneously. Specify a local lockfile by placing a colon (:) after any flags on a recipe's first line. This creates a local lockfile based on the destination file name plus whatever has been set in the LOCKEXT global environment variable.
Alternatively, specify the name of the local lockfile to be used with this recipe after the colon.

11.4.2.4. Special Conditions and Actions

Special characters used before Procmail recipe conditions and actions change the way they are interpreted.
The following characters may be used after the asterisk character (*) at the beginning of a recipe's condition line:
  • ! — In the condition line, this character inverts the condition, causing a match to occur only if the condition does not match the message.
  • < — Checks if the message is under a specified number of bytes.
  • > — Checks if the message is over a specified number of bytes.
The following characters are used to perform special actions:
  • ! — In the action line, this character tells Procmail to forward the message to the specified email addresses.
  • $ — Refers to a variable set earlier in the rc file. This is often used to set a common mailbox that is referred to by various recipes.
  • | — Starts a specified program to process the message.
  • { and } — Constructs a nesting block, used to contain additional recipes to apply to matching messages.
If no special character is used at the beginning of the action line, Procmail assumes that the action line is specifying the mailbox in which to write the message.

11.4.2.5. Recipe Examples

Procmail is an extremely flexible program, but as a result of this flexibility, composing Procmail recipes from scratch can be difficult for new users.
The best way to develop the skills to build Procmail recipe conditions stems from a strong understanding of regular expressions combined with looking at many examples built by others. A thorough explanation of regular expressions is beyond the scope of this section. The structure of Procmail recipes and useful sample Procmail recipes can be found at various places on the Internet (such as http://www.iki.fi/era/procmail/links.html). The proper use and adaptation of regular expressions can be derived by viewing these recipe examples. In addition, introductory information about basic regular expression rules can be found in the grep man page.
The following simple examples demonstrate the basic structure of Procmail recipes and can provide the foundation for more intricate constructions.
A basic recipe may not even contain conditions, as is illustrated in the following example:
:0: new-mail.spool
The first line specifies that a local lockfile is to be created but does not specify a name, so Procmail uses the destination file name and appends the value specified in the LOCKEXT environment variable. No condition is specified, so every message matches this recipe and is placed in the single spool file called new-mail.spool, located within the directory specified by the MAILDIR environment variable. An MUA can then view messages in this file.
A basic recipe, such as this, can be placed at the end of all rc files to direct messages to a default location.
The following example matched messages from a specific email address and throws them away.
:0 * ^From: spammer@domain.com /dev/null
With this example, any messages sent by spammer@domain.com are sent to the /dev/null device, deleting them.

Sending messages to /dev/null

Be certain that rules are working as intended before sending messages to /dev/null for permanent deletion. If a recipe inadvertently catches unintended messages, and those messages disappear, it becomes difficult to troubleshoot the rule.
A better solution is to point the recipe's action to a special mailbox, which can be checked from time to time to look for false positives. Once satisfied that no messages are accidentally being matched, delete the mailbox and direct the action to send the messages to /dev/null.
The following recipe grabs email sent from a particular mailing list and places it in a specified folder.
:0: * ^(From|Cc|To).*tux-lug tuxlug
Any messages sent from the tux-lug@domain.com mailing list are placed in the tuxlug mailbox automatically for the MUA. Note that the condition in this example matches the message if it has the mailing list's email address on the From, Cc, or To lines.
Consult the many Procmail online resources available in Section 11.6, “Additional Resources” for more detailed and powerful recipes.

11.4.2.6. Spam Filters

Because it is called by Sendmail, Postfix, and Fetchmail upon receiving new emails, Procmail can be used as a powerful tool for combating spam.
This is particularly true when Procmail is used in conjunction with SpamAssassin. When used together, these two applications can quickly identify spam emails, and sort or destroy them.
SpamAssassin uses header analysis, text analysis, blacklists, a spam-tracking database, and self-learning Bayesian spam analysis to quickly and accurately identify and tag spam.

Installing the spamassassin package

In order to use SpamAssassin, first ensure the spamassassin package is installed on your system by running, as root:
yum install spamassassin
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
The easiest way for a local user to use SpamAssassin is to place the following line near the top of the ~/.procmailrc file:
INCLUDERC=/etc/mail/spamassassin/spamassassin-default.rc
The /etc/mail/spamassassin/spamassassin-default.rc contains a simple Procmail rule that activates SpamAssassin for all incoming email. If an email is determined to be spam, it is tagged in the header as such and the title is prepended with the following pattern:
*****SPAM*****
The message body of the email is also prepended with a running tally of what elements caused it to be diagnosed as spam.
To file email tagged as spam, a rule similar to the following can be used:
:0 Hw * ^X-Spam-Status: Yes spam
This rule files all email tagged in the header as spam into a mailbox called spam.
Since SpamAssassin is a Perl script, it may be necessary on busy servers to use the binary SpamAssassin daemon (spamd) and the client application (spamc). Configuring SpamAssassin this way, however, requires root access to the host.
To start the spamd daemon, type the following command:
systemctl start spamassassin.service
To start the SpamAssassin daemon when the system is booted, run:
systemctl enable spamassassin.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.
To configure Procmail to use the SpamAssassin client application instead of the Perl script, place the following line near the top of the ~/.procmailrc file. For a system-wide configuration, place it in /etc/procmailrc:
INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

11.5. Mail User Agents

Fedora offers a variety of email programs, both, graphical email client programs, such as Evolution, and text-based email programs such as mutt.
The remainder of this section focuses on securing communication between a client and a server.

11.5.1. Securing Communication

Popular MUAs included with Fedora, such as Evolution and mutt offer SSL-encrypted email sessions.
Like any other service that flows over a network unencrypted, important email information, such as usernames, passwords, and entire messages, may be intercepted and viewed by users on the network. Additionally, since the standard POP and IMAP protocols pass authentication information unencrypted, it is possible for an attacker to gain access to user accounts by collecting usernames and passwords as they are passed over the network.

11.5.1.1. Secure Email Clients

Most Linux MUAs designed to check email on remote servers support SSL encryption. To use SSL when retrieving email, it must be enabled on both the email client and the server.
SSL is easy to enable on the client-side, often done with the click of a button in the MUA's configuration window or via an option in the MUA's configuration file. Secure IMAP and POP have known port numbers (993 and 995, respectively) that the MUA uses to authenticate and download messages.

11.5.1.2. Securing Email Client Communications

Offering SSL encryption to IMAP and POP users on the email server is a simple matter.
First, create an SSL certificate. This can be done in two ways: by applying to a Certificate Authority (CA) for an SSL certificate or by creating a self-signed certificate.

Avoid using self-signed certificates

Self-signed certificates should be used for testing purposes only. Any server used in a production environment should use an SSL certificate granted by a CA.
To create a self-signed SSL certificate for IMAP or POP, change to the /etc/pki/dovecot/ directory, edit the certificate parameters in the /etc/pki/dovecot/dovecot-openssl.conf configuration file as you prefer, and type the following commands, as root:
dovecot]# rm -f certs/dovecot.pem private/dovecot.pem
dovecot]# /usr/libexec/dovecot/mkcert.sh
Once finished, make sure you have the following configurations in your /etc/dovecot/conf.d/10-ssl.conf file:
ssl_cert = </etc/pki/dovecot/certs/dovecot.pem
ssl_key = </etc/pki/dovecot/private/dovecot.pem
Execute the systemctl restart dovecot.service command to restart the dovecot daemon.
Alternatively, the stunnel command can be used as an SSL encryption wrapper around the standard, non-secure connections to IMAP or POP services.
The stunnel utility uses external OpenSSL libraries included with Fedora to provide strong cryptography and to protect the network connections. It is recommended to apply to a CA to obtain an SSL certificate, but it is also possible to create a self-signed certificate.

Installing the stunnel package

In order to use stunnel, first ensure the stunnel package is installed on your system by running, as root:
yum install stunnel
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
To create a self-signed SSL certificate, change to the /etc/pki/tls/certs/ directory, and type the following command:
certs]# make stunnel.pem
Answer all of the questions to complete the process.
Once the certificate is generated, create an stunnel configuration file, for example /etc/stunnel/mail.conf, with the following content:
cert = /etc/pki/tls/certs/stunnel.pem

[pop3s]
accept  = 995
connect = 110

[imaps]
accept  = 993
connect = 143
Once you start stunnel with the created configuration file using the /usr/bin/stunnel /etc/stunnel/mail.conf command, it will be possible to use an IMAP or a POP email client and connect to the email server using SSL encryption.
For more information on stunnel, refer to the stunnel man page or the documents in the /usr/share/doc/stunnel-version-number / directory, where version-number is the version number of stunnel.

11.6. Additional Resources

The following is a list of additional documentation about email applications.

11.6.1. Installed Documentation

  • Information on configuring Sendmail is included with the sendmail and sendmail-cf packages.
    • /usr/share/sendmail-cf/README — Contains information on the m4 macro processor, file locations for Sendmail, supported mailers, how to access enhanced features, and more.
    In addition, the sendmail and aliases man pages contain helpful information covering various Sendmail options and the proper configuration of the Sendmail /etc/mail/aliases file.
  • /usr/share/doc/postfix-version-number — Contains a large amount of information about ways to configure Postfix. Replace version-number with the version number of Postfix.
  • /usr/share/doc/fetchmail-version-number — Contains a full list of Fetchmail features in the FEATURES file and an introductory FAQ document. Replace version-number with the version number of Fetchmail.
  • /usr/share/doc/procmail-version-number — Contains a README file that provides an overview of Procmail, a FEATURES file that explores every program feature, and an FAQ file with answers to many common configuration questions. Replace version-number with the version number of Procmail.
    When learning how Procmail works and creating new recipes, the following Procmail man pages are invaluable:
    • procmail — Provides an overview of how Procmail works and the steps involved with filtering email.
    • procmailrc — Explains the rc file format used to construct recipes.
    • procmailex — Gives a number of useful, real-world examples of Procmail recipes.
    • procmailsc — Explains the weighted scoring technique used by Procmail to match a particular recipe to a message.
    • /usr/share/doc/spamassassin-version-number/ — Contains a large amount of information pertaining to SpamAssassin. Replace version-number with the version number of the spamassassin package.

11.6.2. Useful Websites

  • http://www.sendmail.org/ — Offers a thorough technical breakdown of Sendmail features, documentation and configuration examples.
  • http://www.sendmail.com/ — Contains news, interviews and articles concerning Sendmail, including an expanded view of the many options available.
  • http://www.postfix.org/ — The Postfix project home page contains a wealth of information about Postfix. The mailing list is a particularly good place to look for information.
  • http://fetchmail.berlios.de/ — The home page for Fetchmail, featuring an online manual, and a thorough FAQ.
  • http://www.procmail.org/ — The home page for Procmail with links to assorted mailing lists dedicated to Procmail as well as various FAQ documents.
  • http://partmaps.org/era/procmail/mini-faq.html — An excellent Procmail FAQ, offers troubleshooting tips, details about file locking, and the use of wildcard characters.
  • http://www.uwasa.fi/~ts/info/proctips.html — Contains dozens of tips that make using Procmail much easier. Includes instructions on how to test .procmailrc files and use Procmail scoring to decide if a particular action should be taken.
  • http://www.spamassassin.org/ — The official site of the SpamAssassin project.

Chapter 12. Directory Servers

12.1. OpenLDAP

LDAP (Lightweight Directory Access Protocol) is a set of open protocols used to access centrally stored information over a network. It is based on the X.500 standard for directory sharing, but is less complex and resource-intensive. For this reason, LDAP is sometimes referred to as X.500 Lite.
Like X.500, LDAP organizes information in a hierarchical manner using directories. These directories can store a variety of information such as names, addresses, or phone numbers, and can even be used in a manner similar to the Network Information Service (NIS), enabling anyone to access their account from any machine on the LDAP enabled network.
LDAP is commonly used for centrally managed users and groups, user authentication, or system configuration. It can also serve as a virtual phone directory, allowing users to easily access contact information for other users. Additionally, it can refer a user to other LDAP servers throughout the world, and thus provide an ad-hoc global repository of information. However, it is most frequently used within individual organizations such as universities, government departments, and private companies.
This section covers the installation and configuration of OpenLDAP 2.4, an open source implementation of the LDAPv2 and LDAPv3 protocols.

12.1.1. Introduction to LDAP

Using a client/server architecture, LDAP provides reliable means to create a central information directory accessible from the network. When a client attempts to modify information within this directory, the server verifies the user has permission to make the change, and then adds or updates the entry as requested. To ensure the communication is secure, the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) cryptographic protocols can be used to prevent an attacker from intercepting the transmission.

Using Mozilla NSS

The OpenLDAP suite in Fedora 20 no longer uses OpenSSL. Instead, it uses the Mozilla implementation of Network Security Services (NSS). OpenLDAP continues to work with existing certificates, keys, and other TLS configuration. For more information on how to configure it to use Mozilla certificate and key database, refer to How do I use TLS/SSL with Mozilla NSS.
The LDAP server supports several database systems, which gives administrators the flexibility to choose the best suited solution for the type of information they are planning to serve. Because of a well-defined client Application Programming Interface (API), the number of applications able to communicate with an LDAP server is numerous, and increasing in both quantity and quality.

12.1.1.1. LDAP Terminology

The following is a list of LDAP-specific terms that are used within this chapter:
entry
A single unit within an LDAP directory. Each entry is identified by its unique Distinguished Name (DN).
attribute
Information directly associated with an entry. For example, if an organization is represented as an LDAP entry, attributes associated with this organization might include an address, a fax number, etc. Similarly, people can be represented as entries with common attributes such as personal telephone number or email address.
An attribute can either have a single value, or an unordered space-separated list of values. While certain attributes are optional, other are required. Required attributes are specified using the objectClass definition, and can be found in schema files located in the /etc/openldap/slapd.d/cn=config/cn=schema/ directory.
The assertion of an attribute and its corresponding value is also referred to as a Relative Distinguished Name (RDN). Unlike distinguished names that are unique globally, a relative distinguished name is only unique per entry.
LDIF
The LDAP Data Interchange Format (LDIF) is a plain text representation of an LDAP entry. It takes the following form:
[id] dn: distinguished_name
attribute_type: attribute_valueattribute_type: attribute_value…
…
The optional id is a number determined by the application that is used to edit the entry. Each entry can contain as many attribute_type and attribute_value pairs as needed, as long as they are all defined in a corresponding schema file. A blank line indicates the end of an entry.

12.1.1.2. OpenLDAP Features

OpenLDAP suite provides a number of important features:
  • LDAPv3 Support — Many of the changes in the protocol since LDAP version 2 are designed to make LDAP more secure. Among other improvements, this includes the support for Simple Authentication and Security Layer (SASL), Transport Layer Security (TLS), and Secure Sockets Layer (SSL) protocols.
  • LDAP Over IPC — The use of inter-process communication (IPC) enhances security by eliminating the need to communicate over a network.
  • IPv6 Support — OpenLDAP is compliant with Internet Protocol version 6 (IPv6), the next generation of the Internet Protocol.
  • LDIFv1 Support — OpenLDAP is fully compliant with LDIF version 1.
  • Updated C API — The current C API improves the way programmers can connect to and use LDAP directory servers.
  • Enhanced Standalone LDAP Server — This includes an updated access control system, thread pooling, better tools, and much more.

12.1.1.3. OpenLDAP Server Setup

The typical steps to set up an LDAP server on Fedora are as follows:
  1. Install the OpenLDAP suite. Refer to Section 12.1.2, “Installing the OpenLDAP Suite” for more information on required packages.
  2. Customize the configuration as described in Section 12.1.3, “Configuring an OpenLDAP Server”.
  3. Start the slapd service as described in Section 12.1.4, “Running an OpenLDAP Server”.
  4. Use the ldapadd utility to add entries to the LDAP directory.
  5. Use the ldapsearch utility to verify that the slapd service is accessing the information correctly.

12.1.2. Installing the OpenLDAP Suite

The suite of OpenLDAP libraries and tools is provided by the following packages:
Table 12.1. List of OpenLDAP packages
Package Description
openldap A package containing the libraries necessary to run the OpenLDAP server and client applications.
openldap-clients A package containing the command line utilities for viewing and modifying directories on an LDAP server.
openldap-servers A package containing both the services and utilities to configure and run an LDAP server. This includes the Standalone LDAP Daemon, slapd.
openldap-servers-sql A package containing the SQL support module.

Additionally, the following packages are commonly used along with the LDAP server:
Table 12.2. List of commonly installed additional LDAP packages
Package Description
nss-pam-ldapd A package containing nslcd, a local LDAP name service that allows a user to perform local LDAP queries.
mod_authz_ldap
A package containing mod_authz_ldap, the LDAP authorization module for the Apache HTTP Server. This module uses the short form of the distinguished name for a subject and the issuer of the client SSL certificate to determine the distinguished name of the user within an LDAP directory. It is also capable of authorizing users based on attributes of that user's LDAP directory entry, determining access to assets based on the user and group privileges of the asset, and denying access for users with expired passwords. Note that the mod_ssl module is required when using the mod_authz_ldap module.

To install these packages, use the yum command in the following form:
yum install package
For example, to perform the basic LDAP server installation, type the following at a shell prompt as root:
yum install openldap openldap-clients openldap-servers
Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Fedora, refer to Section 5.2.4, “Installing Packages”.

12.1.2.1. Overview of OpenLDAP Server Utilities

To perform administrative tasks, the openldap-servers package installs the following utilities along with the slapd service:
Table 12.3. List of OpenLDAP server utilities
Command Description
slapacl Allows you to check the access to a list of attributes.
slapadd Allows you to add entries from an LDIF file to an LDAP directory.
slapauth Allows you to check a list of IDs for authentication and authorization permissions.
slapcat Allows you to pull entries from an LDAP directory in the default format and save them in an LDIF file.
slapdn Allows you to check a list of Distinguished Names (DNs) based on available schema syntax.
slapindex Allows you to re-index the slapd directory based on the current content. Run this utility whenever you change indexing options in the configuration file.
slappasswd Allows you to create an encrypted user password to be used with the ldapmodify utility, or in the slapd configuration file.
slapschema Allows you to check the compliance of a database with the corresponding schema.
slaptest Allows you to check the LDAP server configuration.

For a detailed description of these utilities and their usage, refer to the corresponding manual pages as referred to in Section 12.1.6.1, “Installed Documentation”.

Make sure the files have correct owner

Although only root can run slapadd, the slapd service runs as the ldap user. Because of this, the directory server is unable to modify any files created by slapadd. To correct this issue, after running the slapadd utility, type the following at a shell prompt:
chown -R ldap:ldap /var/lib/ldap

Stop slapd before using these utilities

To preserve the data integrity, stop the slapd service before using slapadd, slapcat, or slapindex. You can do so by typing the following at a shell prompt as root:
systemctl stop slapd.service
For more information on how to start, stop, restart, and check the current status of the slapd service, refer to Section 12.1.4, “Running an OpenLDAP Server”.

12.1.2.2. Overview of OpenLDAP Client Utilities

The openldap-clients package installs the following utilities which can be used to add, modify, and delete entries in an LDAP directory:
Table 12.4. List of OpenLDAP client utilities
Command Description
ldapadd Allows you to add entries to an LDAP directory, either from a file, or from standard input. It is a symbolic link to ldapmodify -a.
ldapcompare Allows you to compare given attribute with an LDAP directory entry.
ldapdelete Allows you to delete entries from an LDAP directory.
ldapexop Allows you to perform extended LDAP operations.
ldapmodify Allows you to modify entries in an LDAP directory, either from a file, or from standard input.
ldapmodrdn Allows you to modify the RDN value of an LDAP directory entry.
ldappasswd Allows you to set or change the password for an LDAP user.
ldapsearch Allows you to search LDAP directory entries.
ldapurl Allows you to compose or decompose LDAP URLs.
ldapwhoami Allows you to perform a whoami operation on an LDAP server.

With the exception of ldapsearch, each of these utilities is more easily used by referencing a file containing the changes to be made rather than typing a command for each entry to be changed within an LDAP directory. The format of such a file is outlined in the man page for each utility.

12.1.2.3. Overview of Common LDAP Client Applications

Although there are various graphical LDAP clients capable of creating and modifying directories on the server, none of them is included in Fedora. Popular applications that can access directories in a read-only mode include Mozilla Thunderbird, Evolution, or Ekiga.

12.1.3. Configuring an OpenLDAP Server

By default, the OpenLDAP configuration is stored in the /etc/openldap/ directory. The following table highlights the most important directories and files within this directory:
Table 12.5. List of OpenLDAP configuration files and directories
Path Description
/etc/openldap/ldap.conf The configuration file for client applications that use the OpenLDAP libraries. This includes ldapadd, ldapsearch, Evolution, etc.
/etc/openldap/slapd.d/ The directory containing the slapd configuration.

Note that OpenLDAP no longer reads its configuration from the /etc/openldap/slapd.conf file. Instead, it uses a configuration database located in the /etc/openldap/slapd.d/ directory. If you have an existing slapd.conf file from a previous installation, you can convert it to the new format by running the following command as root:
slaptest -f /etc/openldap/slapd.conf -F /etc/openldap/slapd.d/
The slapd configuration consists of LDIF entries organized in a hierarchical directory structure, and the recommended way to edit these entries is to use the server utilities described in Section 12.1.2.1, “Overview of OpenLDAP Server Utilities”.

Do not edit LDIF files directly

An error in an LDIF file can render the slapd service unable to start. Because of this, it is strongly advised that you avoid editing the LDIF files within the /etc/openldap/slapd.d/ directly.

12.1.3.1. Changing the Global Configuration

Global configuration options for the LDAP server are stored in the /etc/openldap/slapd.d/cn=config.ldif file. The following directives are commonly used:
olcAllows
The olcAllows directive allows you to specify which features to enable. It takes the following form:
olcAllows: feature
It accepts a space-separated list of features as described in Table 12.6, “Available olcAllows options”. The default option is bind_v2.
Table 12.6. Available olcAllows options
Option Description
bind_v2 Enables the acceptance of LDAP version 2 bind requests.
bind_anon_cred Enables an anonymous bind when the Distinguished Name (DN) is empty.
bind_anon_dn Enables an anonymous bind when the Distinguished Name (DN) is not empty.
update_anon Enables processing of anonymous update operations.
proxy_authz_anon Enables processing of anonymous proxy authorization control.

Example 12.1. Using the olcAllows directive
olcAllows: bind_v2 update_anon

olcConnMaxPending
The olcConnMaxPending directive allows you to specify the maximum number of pending requests for an anonymous session. It takes the following form:
olcConnMaxPending: number
The default option is 100.
Example 12.2. Using the olcConnMaxPending directive
olcConnMaxPending: 100

olcConnMaxPendingAuth
The olcConnMaxPendingAuth directive allows you to specify the maximum number of pending requests for an authenticated session. It takes the following form:
olcConnMaxPendingAuth: number
The default option is 1000.
Example 12.3. Using the olcConnMaxPendingAuth directive
olcConnMaxPendingAuth: 1000

olcDisallows
The olcDisallows directive allows you to specify which features to disable. It takes the following form:
olcDisallows: feature
It accepts a space-separated list of features as described in Table 12.7, “Available olcDisallows options”. No features are disabled by default.
Table 12.7. Available olcDisallows options
Option Description
bind_anon Disables the acceptance of anonymous bind requests.
bind_simple Disables the simple bind authentication mechanism.
tls_2_anon Disables the enforcing of an anonymous session when the STARTTLS command is received.
tls_authc Disallows the STARTTLS command when authenticated.

Example 12.4. Using the olcDisallows directive
olcDisallows: bind_anon

olcIdleTimeout
The olcIdleTimeout directive allows you to specify how many seconds to wait before closing an idle connection. It takes the following form:
olcIdleTimeout: number
This option is disabled by default (that is, set to 0).
Example 12.5. Using the olcIdleTimeout directive
olcIdleTimeout: 180

olcLogFile
The olcLogFile directive allows you to specify a file in which to write log messages. It takes the following form:
olcLogFile: file_name
The log messages are written to standard error by default.
Example 12.6. Using the olcLogFile directive
olcLogFile: /var/log/slapd.log

olcReferral
The olcReferral option allows you to specify a URL of a server to process the request in case the server is not able to handle it. It takes the following form:
olcReferral: URL
This option is disabled by default.
Example 12.7. Using the olcReferral directive
olcReferral: ldap://root.openldap.org

olcWriteTimeout
The olcWriteTimeout option allows you to specify how many seconds to wait before closing a connection with an outstanding write request. It takes the following form:
olcWriteTimeout
This option is disabled by default (that is, set to 0).
Example 12.8. Using the olcWriteTimeout directive
olcWriteTimeout: 180

12.1.3.2. Changing the Database-Specific Configuration

By default, the OpenLDAP server uses Berkeley DB (BDB) as a database back end. The configuration for this database is stored in the /etc/openldap/slapd.d/cn=config/olcDatabase={1}bdb.ldif file. The following directives are commonly used in a database-specific configuration:
olcReadOnly
The olcReadOnly directive allows you to use the database in a read-only mode. It takes the following form:
olcReadOnly: boolean
It accepts either TRUE (enable the read-only mode), or FALSE (enable modifications of the database). The default option is FALSE.
Example 12.9. Using the olcReadOnly directive
olcReadOnly: TRUE

olcRootDN
The olcRootDN directive allows you to specify the user that is unrestricted by access controls or administrative limit parameters set for operations on the LDAP directory. It takes the following form:
olcRootDN: distinguished_name
It accepts a Distinguished Name (DN). The default option is cn=Manager,dn=my-domain,dc=com.
Example 12.10. Using the olcRootDN directive
olcRootDN: cn=root,dn=example,dn=com

olcRootPW
The olcRootPW directive allows you to set a password for the user that is specified using the olcRootDN directive. It takes the following form:
olcRootPW: password
It accepts either a plain text string, or a hash. To generate a hash, use the slappaswd utility, for example:
~]$ slappaswd
New password: 
Re-enter new password: 
{SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD
Example 12.11. Using the olcRootPW directive
olcRootPW: {SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD

olcSuffix
The olcSuffix directive allows you to specify the domain for which to provide information. It takes the following form:
olcSuffix: domain_name
It accepts a fully qualified domain name (FQDN). The default option is dc=my-domain,dc=com.
Example 12.12. Using the olcSuffix directive
olcSuffix: dc=example,dc=com

12.1.3.3. Extending Schema

Since OpenLDAP 2.3, the /etc/openldap/slapd.d/ directory also contains LDAP definitions that were previously located in /etc/openldap/schema/. It is possible to extend the schema used by OpenLDAP to support additional attribute types and object classes using the default schema files as a guide. However, this task is beyond the scope of this chapter. For more information on this topic, refer to http://www.openldap.org/doc/admin/schema.html.

12.1.4. Running an OpenLDAP Server

This section describes how to start, stop, restart, and check the current status of the Standalone LDAP Daemon. For more information on how to manage system services in general, refer to Chapter 7, Services and Daemons.

12.1.4.1. Starting the Service

To run the slapd service, type the following at a shell prompt as root:
systemctl start slapd.service
If you want the service to start automatically at the boot time, use the following command:
systemctl enable slapd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

12.1.4.2. Stopping the Service

To stop the running slapd service, type the following at a shell prompt as root:
systemctl stop slapd.service
To prevent the service from starting automatically at the boot time, type:
systemctl disable slapd.service
Refer to Chapter 7, Services and Daemons for more information on how to configure services in Fedora.

12.1.4.3. Restarting the Service

To restart the running slapd service, type the following at a shell prompt as root:
systemctl restart slapd.service
This stops the service, and then starts it again. Use this command to reload the configuration.

12.1.4.4. Checking the Service Status

To check whether the service is running, type the following at a shell prompt:
systemctl is-active slapd.service

12.1.5. Configuring a System to Authenticate Using OpenLDAP

In order to configure a system to authenticate using OpenLDAP, make sure that the appropriate packages are installed on both LDAP server and client machines. For information on how to set up the server, follow the instructions in Section 12.1.2, “Installing the OpenLDAP Suite” and Section 12.1.3, “Configuring an OpenLDAP Server”. On a client, type the following at a shell prompt as root:
yum install openldap openldap-clients nss-pam-ldapd
Chapter 8, Configuring Authentication provides detailed instructions on how to configure applications to use LDAP for authentication.

12.1.5.1. Migrating Old Authentication Information to LDAP Format

The migrationtools package provides a set of shell and Perl scripts to help you migrate authentication information into an LDAP format. To install this package, type the following at a shell prompt as root:
yum install migrationtools
This will install the scripts to the /usr/share/migrationtools/ directory. Once installed, edit the /usr/share/migrationtools/migrate_common.ph file and change the following lines to reflect the correct domain, for example:
# Default DNS domain
$DEFAULT_MAIL_DOMAIN = "example.com";

# Default base
$DEFAULT_BASE = "dc=example,dc=com";
Alternatively, you can specify the environment variables directly on the command line. For example, to run the migrate_all_online.sh script with the default base set to dc=example,dc=com, type:
export DEFAULT_BASE="dc=example,dc=com" \
/usr/share/migrationtools/migrate_all_online.sh
To decide which script to run in order to migrate the user database, refer to Table 12.8, “Commonly used LDAP migration scripts”.
Table 12.8. Commonly used LDAP migration scripts
Existing Name Service Is LDAP Running? Script to Use
/etc flat files yes migrate_all_online.sh
/etc flat files no migrate_all_offline.sh
NetInfo yes migrate_all_netinfo_online.sh
NetInfo no migrate_all_netinfo_offline.sh
NIS (YP) yes migrate_all_nis_online.sh
NIS (YP) no migrate_all_nis_offline.sh

For more information on how to use these scripts, refer to the README and the migration-tools.txt files in the /usr/share/doc/migrationtools-version/ directory.

12.1.6. Additional Resources

The following resources offer additional information on the Lightweight Directory Access Protocol. Before configuring LDAP on your system, it is highly recommended that you review these resources, especially the OpenLDAP Software Administrator's Guide.

12.1.6.1. Installed Documentation

The following documentation is installed with the openldap-servers package:
/usr/share/doc/openldap-servers-version/guide.html
A copy of the OpenLDAP Software Administrator's Guide.
/usr/share/doc/openldap-servers-version/README.schema
A README file containing the description of installed schema files.
Additionally, there is also a number of manual pages that are installed with the openldap, openldap-servers, and openldap-clients packages:
Client Applications
  • man ldapadd — Describes how to add entries to an LDAP directory.
  • man ldapdelete — Describes how to delete entries within an LDAP directory.
  • man ldapmodify — Describes how to modify entries within an LDAP directory.
  • man ldapsearch — Describes how to search for entries within an LDAP directory.
  • man ldappasswd — Describes how to set or change the password of an LDAP user.
  • man ldapcompare — Describes how to use the ldapcompare tool.
  • man ldapwhoami — Describes how to use the ldapwhoami tool.
  • man ldapmodrdn — Describes how to modify the RDNs of entries.
Server Applications
  • man slapd — Describes command line options for the LDAP server.
Administrative Applications
  • man slapadd — Describes command line options used to add entries to a slapd database.
  • man slapcat — Describes command line options used to generate an LDIF file from a slapd database.
  • man slapindex — Describes command line options used to regenerate an index based upon the contents of a slapd database.
  • man slappasswd — Describes command line options used to generate user passwords for LDAP directories.
Configuration Files
  • man ldap.conf — Describes the format and options available within the configuration file for LDAP clients.
  • man slapd-config — Describes the format and options available within the configuration directory.

12.1.6.2. Useful Websites

http://www.openldap.org/doc/admin24/
The current version of the OpenLDAP Software Administrator's Guide.
http://www.kingsmountain.com/ldapRoadmap.shtml
Jeff Hodges' LDAP Roadmap & FAQ containing links to several useful resources and emerging news concerning the LDAP protocol.
http://www.ldapman.org/articles/
A collection of articles that offer a good introduction to LDAP, including methods to design a directory tree and customizing directory structures.
http://www.padl.com/
A website of developers of several useful LDAP tools.

Chapter 13. File and Print Servers

This chapter guides you through the installation and configuration of Samba, an open source implementation of the Server Message Block (SMB) protocol, and vsftpd, the primary FTP server shipped with Fedora. Additionally, it explains how to use the Printer Configuration tool to configure printers.

13.1. Samba

Samba is an open source implementation of the Server Message Block (SMB) protocol. It allows the networking of Microsoft Windows®, Linux, UNIX, and other operating systems together, enabling access to Windows-based file and printer shares. Samba's use of SMB allows it to appear as a Windows server to Windows clients.

Installing the samba package

In order to use Samba, first ensure the samba package is installed on your system by running, as root:
yum install samba
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.

13.1.1. Introduction to Samba

The third major release of Samba, version 3.0.0, introduced numerous improvements from prior versions, including:
  • The ability to join an Active Directory domain by means of the Lightweight Directory Access Protocol (LDAP) and Kerberos
  • Built in Unicode support for internationalization
  • Support for all recent Microsoft Windows server and client versions to connect to Samba servers without needing local registry hacking
  • Two new documents developed by the Samba.org team, which include a 400+ page reference manual, and a 300+ page implementation and integration manual. For more information about these published titles, refer to Section 13.1.12.2, “Related Books”.

13.1.1.1. Samba Features

Samba is a powerful and versatile server application. Even seasoned system administrators must know its abilities and limitations before attempting installation and configuration.
What Samba can do:
  • Serve directory trees and printers to Linux, UNIX, and Windows clients
  • Assist in network browsing (with or without NetBIOS)
  • Authenticate Windows domain logins
  • Provide Windows Internet Name Service (WINS) name server resolution
  • Act as a Windows NT®-style Primary Domain Controller (PDC)
  • Act as a Backup Domain Controller (BDC) for a Samba-based PDC
  • Act as an Active Directory domain member server
  • Join a Windows NT/2000/2003/2008 PDC
What Samba cannot do:
  • Act as a BDC for a Windows PDC (and vice versa)
  • Act as an Active Directory domain controller

13.1.2. Samba Daemons and Related Services

The following is a brief introduction to the individual Samba daemons and services.

13.1.2.1. Samba Daemons

Samba is comprised of three daemons (smbd, nmbd, and winbindd). Three services (smb, nmb, and winbind) control how the daemons are started, stopped, and other service-related features. These services act as different init scripts. Each daemon is listed in detail below, as well as which specific service has control over it.
smbd
The smbd server daemon provides file sharing and printing services to Windows clients. In addition, it is responsible for user authentication, resource locking, and data sharing through the SMB protocol. The default ports on which the server listens for SMB traffic are TCP ports 139 and 445.
The smbd daemon is controlled by the smb service.
nmbd
The nmbd server daemon understands and replies to NetBIOS name service requests such as those produced by SMB/Common Internet File System (CIFS) in Windows-based systems. These systems include Windows 95/98/ME, Windows NT, Windows 2000, Windows XP, and LanManager clients. It also participates in the browsing protocols that make up the Windows Network Neighborhood view. The default port that the server listens to for NMB traffic is UDP port 137.
The nmbd daemon is controlled by the nmb service.
winbindd
The winbind service resolves user and group information on a server running Windows NT, 2000, 2003 or Windows Server 2008. This makes Windows user / group information understandable by UNIX platforms. This is achieved by using Microsoft RPC calls, Pluggable Authentication Modules (PAM), and the Name Service Switch (NSS). This allows Windows NT domain users to appear and operate as UNIX users on a UNIX machine. Though bundled with the Samba distribution, the winbind service is controlled separately from the smb service.
The winbindd daemon is controlled by the winbind service and does not require the smb service to be started in order to operate. winbindd is also used when Samba is an Active Directory member, and may also be used on a Samba domain controller (to implement nested groups and/or interdomain trust). Because winbind is a client-side service used to connect to Windows NT-based servers, further discussion of winbind is beyond the scope of this chapter.

Obtaining a list of utilities that are shipped with Samba

You may refer to Section 13.1.11, “Samba Distribution Programs” for a list of utilities included in the Samba distribution.

13.1.3. Connecting to a Samba Share

You can use Nautilus to view available Samba shares on your network. To view a list of Samba workgroups and domains on your network, select ApplicationsAccessoriesFiles from the Activities menu, and click Browse Network at the sidebar.
Browsing a network in Nautilus
Browsing a network in Nautilus
Figure 13.1. Browsing a network in Nautilus

An icon appears for each available SMB workgroup or domain on the network. Double-click one of the workgroup/domain icons to view a list of computers within the workgroup/domain.
Each machine within the workgroup is represented by its own icon. Double-click on an icon to view the Samba shares on the machine. If a username and password combination is required, you are prompted for them.
Alternately, you can also specify the Samba server and sharename in the Location: bar for Nautilus using the following syntax (replace servername and sharename with the appropriate values):
smb://servername/sharename

13.1.3.1. Command Line

To query the network for Samba servers, use the findsmb command. For each server found, it displays its IP address, NetBIOS name, workgroup name, operating system, and SMB server version.
To connect to a Samba share from a shell prompt, type the following command:
smbclient //hostname/sharename -U username
Replace hostname with the hostname or IP address of the Samba server you want to connect to, sharename with the name of the shared directory you want to browse, and username with the Samba username for the system. Enter the correct password or press Enter if no password is required for the user.
If you see the smb:\> prompt, you have successfully logged in. Once you are logged in, type help for a list of commands. If you wish to browse the contents of your home directory, replace sharename with your username. If the -U switch is not used, the username of the current user is passed to the Samba server.
To exit smbclient, type exit at the smb:\> prompt.

13.1.3.2. Mounting the Share

Sometimes it is useful to mount a Samba share to a directory so that the files in the directory can be treated as if they are part of the local file system.
To mount a Samba share to a directory, create a directory to mount it to (if it does not already exist), and execute the following command as root:
mount -t cifs //servername/sharename /mnt/point/ -o username=username,password=password
This command mounts sharename from servername in the local directory /mnt/point/.

Installing cifs-utils package

The mount.cifs utility is a separate RPM (independent from Samba). In order to use mount.cifs, first ensure the cifs-utils package is installed on your system by running, as root:
yum install cifs-utils
For more information on installing packages with Yum, refer to Section 5.2.4, “Installing Packages”.
Note that the cifs-utils package also contains the cifs.upcall binary called by the kernel in order to perform kerberized CIFS mounts. For more information on cifs.upcall, refer to man cifs.upcall.
For more information about mounting a samba share, refer to man mount.cifs.

CIFS servers that require plain text passwords

Some CIFS servers require plain text passwords for authentication. Support for plain text password authentication can be enabled using the following command as root:
echo 0x37 > /proc/fs/cifs/SecurityFlags
WARNING: This operation can expose passwords by removing password encryption.

13.1.4. Configuring a Samba Server

The default configuration file (/etc/samba/smb.conf) allows users to view their home directories as a Samba share. It also shares all printers configured for the system as Samba shared printers. In other words, you can attach a printer to the system and print to it from the Windows machines on your network.

13.1.4.1. Graphical Configuration

To configure Samba using a graphical interface, use one of the available Samba graphical user interfaces. A list of available GUIs can be found at http://www.samba.org/samba/GUI/.

13.1.4.2. Command Line Configuration

Samba uses /etc/samba/smb.conf as its configuration file. If you change this configuration file, the changes do not take effect until you restart the Samba daemon with the following command, as root:
systemctl restart smb.service
To specify the Windows workgroup and a brief description of the Samba server, edit the following lines in your /etc/samba/smb.conf file:
workgroup = WORKGROUPNAME
server string = BRIEF COMMENT ABOUT SERVER
Replace WORKGROUPNAME with the name of the Windows workgroup to which this machine should belong. The BRIEF COMMENT ABOUT SERVER is optional and is used as the Windows comment about the Samba system.
To create a Samba share directory on your Linux system, add the following section to your /etc/samba/smb.conf file (after modifying it to reflect your needs and your system):
[sharename]
comment = Insert a comment here
path = /home/share/
valid users = tfox carole
public = no
writable = yes
printable = no
create mask = 0765
The above example allows the users tfox and carole to read and write to the directory /home/share, on the Samba server, from a Samba client.

13.1.4.3. Encrypted Passwords

Encrypted passwords are enabled by default because it is more secure to do so. To create a user with an encrypted password, use the command smbpasswd -a username .

13.1.5. Starting and Stopping Samba

To start a Samba server, type the following command in a shell prompt, as root:
systemctl start smb.service

Setting up a domain member server

To set up a domain member server, you must first join the domain or Active Directory using the net join command before starting the smb service.
To stop the server, type the following command in a shell prompt, as root:
systemctl stop smb.service
The restart option is a quick way of stopping and then starting Samba. This is the most reliable way to make configuration changes take effect after editing the configuration file for Samba. Note that the restart option starts the daemon even if it was not running originally.
To restart the server, type the following command in a shell prompt, as root:
systemctl restart smb.service
The condrestart (conditional restart) option only starts smb on the condition that it is currently running. This option is useful for scripts, because it does not start the daemon if it is not running.

Applying the changes to the configuration

When the /etc/samba/smb.conf file is changed, Samba automatically reloads it after a few minutes. Issuing a manual restart or reload is just as effective.
To conditionally restart the server, type the following command, as root:
systemctl condrestart smb.service
A manual reload of the /etc/samba/smb.conf file can be useful in case of a failed automatic reload by the smb service. To ensure that the Samba server configuration file is reloaded without restarting the service, type the following command, as root:
systemctl reload smb.service
By default, the smb service does not start automatically at boot time. To configure Samba to start at boot time, use a service manager such as systemctl. Refer to Chapter 7, Services and Daemons for more information regarding this tool.

13.1.6. Samba Server Types and the smb.conf File

Samba configuration is straightforward. All modifications to Samba are done in the /etc/samba/smb.conf configuration file. Although the default smb.conf file is well documented, it does not address complex topics such as LDAP, Active Directory, and the numerous domain controller implementations.
The following sections describe the different ways a Samba server can be configured. Keep in mind your needs and the changes required to the /etc/samba/smb.conf file for a successful configuration.

13.1.6.1. Stand-alone Server

A stand-alone server can be a workgroup server or a member of a workgroup environment. A stand-alone server is not a domain controller and does not participate in a domain in any way. The following examples include several anonymous share-level security configurations and one user-level security configuration. For more information on share-level and user-level security modes, refer to Section 13.1.7, “Samba Security Modes”.
13.1.6.1.1. Anonymous Read-Only
The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read-only file sharing. The security = share parameter makes a share anonymous. Note, security levels for a single Samba server cannot be mixed. The security directive is a global Samba parameter located in the [global] configuration section of the /etc/samba/smb.conf file.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
[data]
comment = Documentation Samba Server
path = /export
read only = Yes
guest only = Yes
13.1.6.1.2. Anonymous Read/Write
The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read/write file sharing. To enable anonymous read/write file sharing, set the read only directive to no. The force user and force group directives are also added to enforce the ownership of any newly placed files specified in the share.

Do not use anonymous read/write servers

Although having an anonymous read/write server is possible, it is not recommended. Any files placed in the share space, regardless of user, are assigned the user/group combination as specified by a generic user (force user) and group (force group) in the /etc/samba/smb.conf file.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
[data]
comment = Data
path = /export
force user = docsbot
force group = users
read only = No
guest ok = Yes
13.1.6.1.3. Anonymous Print Server
The following /etc/samba/smb.conf file shows a sample configuration needed to implement an anonymous print server. Setting browseable to no as shown does not list the printer in Windows Network Neighborhood. Although hidden from browsing, configuring the printer explicitly is possible. By connecting to DOCS_SRV using NetBIOS, the client can have access to the printer if the client is also part of the DOCS workgroup. It is also assumed that the client has the correct local printer driver installed, as the use client driver directive is set to Yes. In this case, the Samba server has no responsibility for sharing printer drivers to the client.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
printcap name = cups
disable spools= Yes
show add printer wizard = No
printing = cups
[printers]
comment = All Printers
path = /var/spool/samba
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = Yes
13.1.6.1.4. Secure Read/Write File and Print Server
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a secure read/write print server. Setting the security directive to user forces Samba to authenticate client connections. Notice the [homes] share does not have a force user or force group directive as the [public] share does. The [homes] share uses the authenticated user details for any files created as opposed to the force user and force group in [public].
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = user
printcap name = cups
disable spools = Yes
show add printer wizard = No
printing = cups
[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No
[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes
[printers]
comment = All Printers
path = /var/spool/samba
printer admin = john, ed, @admins
create mask = 0600
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = Yes

13.1.6.2. Domain Member Server

A domain member, while similar to a stand-alone server, is logged into a domain controller (either Windows or Samba) and is subject to the domain's security rules. An example of a domain member server would be a departmental server running Samba that has a machine account on the Primary Domain Controller (PDC). All of the department's clients still authenticate with the PDC, and desktop profiles and all network policy files are included. The difference is that the departmental server has the ability to control printer and network shares.
13.1.6.2.1. Active Directory Domain Member Server
The following /etc/samba/smb.conf file shows a sample configuration needed to implement an Active Directory domain member server. In this example, Samba authenticates users for services being run locally but is also a client of the Active Directory. Ensure that your kerberos realm parameter is shown in all caps (for example realm = EXAMPLE.COM). Since Windows 2000/2003/2008 requires Kerberos for Active Directory authentication, the realm directive is required. If Active Directory and Kerberos are running on different servers, the password server directive may be required to help the distinction.
[global]
realm = EXAMPLE.COM
security = ADS
encrypt passwords = yes
# Optional. Use only if Samba cannot determine the Kerberos server automatically.
password server = kerberos.example.com
In order to join a member server to an Active Directory domain, the following steps must be completed:
  • Configuration of the /etc/samba/smb.conf file on the member server
  • Configuration of Kerberos, including the /etc/krb5.conf file, on the member server
  • Creation of the machine account on the Active Directory domain server
  • Association of the member server to the Active Directory domain
To create the machine account and join the Windows 2000/2003/2008 Active Directory, Kerberos must first be initialized for the member server wishing to join the Active Directory domain. To create an administrative Kerberos ticket, type the following command as root on the member server:
kinit administrator@EXAMPLE.COM
The kinit command is a Kerberos initialization script that references the Active Directory administrator account and Kerberos realm. Since Active Directory requires Kerberos tickets, kinit obtains and caches a Kerberos ticket-granting ticket for client/server authentication.
To join an Active Directory server (windows1.example.com), type the following command as root on the member server:
net ads join -S windows1.example.com -U administrator%password
Since the machine windows1 was automatically found in the corresponding Kerberos realm (the kinit command succeeded), the net command connects to the Active Directory server using its required administrator account and password. This creates the appropriate machine account on the Active Directory and grants permissions to the Samba domain member server to join the domain.

The security option

Since security = ads and not security = user is used, a local password back end such as smbpasswd is not needed. Older clients that do not support security = ads are authenticated as if security = domain had been set. This change does not affect functionality and allows local users not previously in the domain.
13.1.6.2.2. Windows NT4-based Domain Member Server
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a Windows NT4-based domain member server. Becoming a member server of an NT4-based domain is similar to connecting to an Active Directory. The main difference is NT4-based domains do not use Kerberos in their authentication method, making the /etc/samba/smb.conf file simpler. In this instance, the Samba member server functions as a pass through to the NT4-based domain server.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = domain
[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No
[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes
Having Samba as a domain member server can be useful in many situations. There are times where the Samba server can have other uses besides file and printer sharing. It may be beneficial to make Samba a domain member server in instances where Linux-only applications are required for use in the domain environment. Administrators appreciate keeping track of all machines in the domain, even if not Windows-based. In the event the Windows-based server hardware is deprecated, it is quite easy to modify the /etc/samba/smb.conf file to convert the server to a Samba-based PDC. If Windows NT-based servers are upgraded to Windows 2000/2003/2008, the /etc/samba/smb.conf file is easily modifiable to incorporate the infrastructure change to Active Directory if needed.

Make sure you join the domain before starting Samba

After configuring the /etc/samba/smb.conf file, join the domain before starting Samba by typing the following command as root:
net rpc join -U administrator%password
Note that the -S option, which specifies the domain server hostname, does not need to be stated in the net rpc join command. Samba uses the hostname specified by the workgroup directive in the /etc/samba/smb.conf file instead of it being stated explicitly.

13.1.6.3. Domain Controller

A domain controller in Windows NT is functionally similar to a Network Information Service (NIS) server in a Linux environment. Domain controllers and NIS servers both host user/group information databases as well as related services. Domain controllers are mainly used for security, including the authentication of users accessing domain resources. The service that maintains the user/group database integrity is called the Security Account Manager (SAM). The SAM database is stored differently between Windows and Linux Samba-based systems, therefore SAM replication cannot be achieved and platforms cannot be mixed in a PDC/BDC environment.
In a Samba environment, there can be only one PDC and zero or more BDCs.

A mixed Samba/Windows domain controller environment

Samba cannot exist in a mixed Samba/Windows domain controller environment (Samba cannot be a BDC of a Windows PDC or vice versa). Alternatively, Samba PDCs and BDCs can coexist.
13.1.6.3.1. Primary Domain Controller (PDC) using tdbsam
The simplest and most common implementation of a Samba PDC uses the new default tdbsam password database back end. Replacing the aging smbpasswd back end, tdbsam has numerous improvements that are explained in more detail in Section 13.1.8, “Samba Account Information Databases”. The passdb backend directive controls which back end is to be used for the PDC.
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a tdbsam password database back end.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
passdb backend = tdbsam
security = user
add user script = /usr/sbin/useradd -m "%u"
delete user script = /usr/sbin/userdel -r "%u"
add group script = /usr/sbin/groupadd "%g"
delete group script = /usr/sbin/groupdel "%g"
add user to group script = /usr/sbin/usermod -G "%g" "%u"
add machine script = /usr/sbin/useradd -s /bin/false -d /dev/null  -g machines "%u"
# The following specifies the default logon script
# Per user logon scripts can be specified in the user
# account using pdbedit logon script = logon.bat
# This sets the default profile path.
# Set per user paths with pdbedit
logon drive = H:
domain logons = Yes
os level = 35
preferred master = Yes
domain master = Yes
[homes]
	comment = Home Directories
	valid users = %S
	read only = No
[netlogon]
	comment = Network Logon Service
	path = /var/lib/samba/netlogon/scripts
	browseable = No
	read only = No
# For profiles to work, create a user directory under the
# path shown.
mkdir -p /var/lib/samba/profiles/john
[Profiles]
	comment = Roaming Profile Share
	path = /var/lib/samba/profiles
	read only = No
	browseable = No
	guest ok = Yes
	profile acls = Yes
# Other resource shares ... ...
To provide a functional PDC system which uses the tdbsam follow these steps:
  1. Use a configuration of the smb.conf file as shown in the example above.
  2. Add the root user to the Samba password database:
    smbpasswd -a root
  3. Start the smb service.
  4. Make sure all profile, user, and netlogon directories are created.
  5. Add groups that users can be members of:
    groupadd -f users
    groupadd -f nobody
    groupadd -f ntadmins
  6. Associate the UNIX groups with their respective Windows groups:
    net groupmap add ntgroup="Domain Users" unixgroup=users
    net groupmap add ntgroup="Domain Guests" unixgroup=nobody
    net groupmap add ntgroup="Domain Admins" unixgroup=ntadmins
  7. Grant access rights to a user or a group. For example, to grant the right to add client machines to the domain on a Samba domain controller, to the members to the Domain Admins group, execute the following command:
    net rpc rights grant 'DOCS\Domain Admins' SetMachineAccountPrivilege -S PDC -U root
Keep in mind that Windows systems prefer to have a primary group which is mapped to a domain group such as Domain Users.
Windows groups and users use the same namespace thus not allowing the existence of a group and a user with the same name like in UNIX.

Limitations of the tdbsam authentication back end

If you need more than one domain controller or have more than 250 users, do not use a tdbsam authentication back end. LDAP is recommended in these cases.
13.1.6