Product SiteDocumentation Site

Multiple architectures

Most of the RPM design goals mentioned so far are intended primarily to ease the life of system administrators and others who regularly install, remove, and upgrade applications or who need to see what is installed or verify that installed applications have been installed correctly. Some of the design goals for RPM are intended primarily not for those sorts of users of RPM but for users who must prepare software to be installed using RPM.
One of the major limitations of early Linux package management utilities was that they could produce packages suitable only for installation on one type of computer: those that used 32-bit Intel-compatible CPUs. By 1994, Linux was beginning to support other CPUs in addition to the originally supported Intel CPUs. (Initially, Digital's Alpha processor and Motorola's 68000 series of processors were among the first additional CPUs that Linux supported. These days, Linux supports dozens of CPU architectures.) This posed a problem for distribution developers such as Red Hat and Debian, and for application vendors who desired to package their software for use on Linux. Because the available packaging methods could not produce packages for multiple architectures, packagers making software for multiple CPUs had to do extra work to prepare their packages.
Furthermore, once the packagers had prepared packages, no method was available to indicate the architecture the packages targeted, making it difficult for end users to know on which machine types they could install the packages.
Red Hat decided to overcome these limitations by incorporating architecture support into RPM, adding features so that the basic setup a packager performs to create a package could be leveraged to produce packages that would run on various CPUs, and so that end users could look at a package and immediately identify for which types of systems it was intended.