Configurando NTP usando ntpd
Introducción a NTP
El Protocolo de Hora de Red (NTP) habilita la propagación segura de la información de fecha y hora con el objetivo de mantener los relojes de los sistemas de ordenadores en red sincronizados a una referencia común en la red o en Internet. Muchos organismos de normalización de todo el mundo tienen relojes atómicos que pueden estar disponibles como referencia. Los relojes que conforman el Sistema de Posicionamiento Global contienen más de un reloj atómico, haciendo sus señales de hora muy seguras potencialmente. Sus señales pueden ser deliberadamente degradadas por razones militares. Una situación ideal sería que cada sitio tenga un servidor, con su propio reloj de referencia enganchado para actuar como servidor horario para todo el sitio. Existen muchos dispositivos que obtienen la fecha y la hora por medio de transmisiones de radio de baja frecuencia o del Sistema de Posicionamiento Global (GPS).Sin embargo para la mayoría de las situaciones, se puede utilizar una gama de servidores de tiempo de acceso público conectados a Internet en ubicaciones geográficamente dispersas. Estos servidores NTP
suministran "Hora Universal Coordinada" (UTC). La información sobre estos servidores se puede encontrar en www.pool.ntp.org.
Mantener una hora precisa es importante por diversas razones en las Tecnologías de la Información. En la red, por ejemplo, se requieren sellos de tiempo precisos en los paquetes y en los registros. Los registros se usan para investigar cuestiones de servicio y de seguridad y por lo tanto los sellos de tiempo de diferentes sistemas deben ser puestos por relojes sincronizados para tener un valor real. Puesto que los sistemas y las redes son cada vez más rápidos, existe una necesidad de que los relojes incrementen su precisión y resolución. En algunos países existe la obligación legal de mantener relojes precisos sincronizados. Visite www.ntp.org para más información. En los sistemas Linux, NTP
está implementado por un demonio que corre en el espacio de usuario. El demonio NTP
de espacio de usuario predeterminado en 29 es chronyd
. Debe ser deshabilitado si desea usar el demonio ntpd
. Vea Configurando NTP Usando la Suite chrony para información sobre chrony.
El demonio de espacio de usuario actualiza el reloj del sistema, que es un reloj software corriendo en el kernel. Linux utiliza un reloj software como su reloj de sistema en lugar del típico reloj hardware integrado conocido como "Real Time Clock" (RTC). Vea las páginas de manual rtc(4)
y hwclock(8)
para información sobre relojes hardware. El reloj del sistema puede mantener la hora utilizando diversos relojes fuente. Normalmente se usa el Time Stamp Counter (TSC). El TSC es un registro de CPU que cuenta el número ciclos desde el último reinicio. Es muy rápido, tiene una alta resolución y no tiene interrupciones. Al arranque del sistema, el reloj del sistema lee la fecha y la hora desde el RTC. La hora que mantiene el RTC variará hasta cinco minutos de la hora real debido a variaciones de temperatura. Por eso la necesidad de que el reloj del sistema esté constantemente sincronizado con referencias de hora externas. Cuando el reloj del sistema está siendo sincronizado por ntpd
, el kernel a su vez actualizará el RTC cada 11 minutos automáticamente.
Estratos NTP
LOs servidores NTP
están clasificados de acuerdo a su distancia de sincronización de los relojes atómicos que son la fuente de las señales de hora. Los servidores están pensados para estar organizados en capas, o estratos, de 1 a 15 de arriba hacia abajo. Por eso se usa la palabra estrato para referirse a una capa específica. Los relojes atómicos se denominan Estrato 0 ya que está es la fuente, pero por la Internet no se envían paquetes de Estrato 0, todos los relojes atómicos de estrato 0 están adjuntos a un servidor al que nos referimos como estrato 1. Estos servidores envían paquetes marcados como Estrato 1. Un servidor que se sincroniza con paquetes de estrato n
pertenece al siguiente, más bajo, estrato y marcará sus paquetes como estrato n+1
. Los servidores del mismo estrato pueden intercambiar paquetes entre si pero están designados como pertenecientes a un solo estrato, el estrato uno por debajo de la mejor referencia a la que estén sincronizados. La designación de Estrato 16 se usa para indicar que el servidor no está actualmente sincronizado con ninguna fuente de hora fiable.
Advierta que de modo predeterminado los clientes NTP
actúan como servidores de aquellos sistemas que están el estrato de debajo de ellos.
Aquí hay un resumen de los Estratos NTP
:
- Stratum 0
-
Relojes Atómicos y sus señales difundidas por Radio y GPS
-
GPS (Sistema de Posicionamiento Global)
-
Sistemas de Teléfono Móvil
-
Transmisión de Radio de Baja Frecuencia+ WWVB (Colorado, EEUU.), JJY-40 y JJY-60 (Japón), DCF77 (Alemania) y MSF (Reino Unido)
Estas señales pueden ser recibidas por dispositivos dedicados y se conectan normalmente por RS-232 a un sistema usado como un servidor de hora de una organización o en todo el sitio.
-
- Stratum 1
-
Ordenador con reloj de radio, reloj GPS o reloj atómico adjunto
- Stratum 2
-
Lee desde estrato 1; Sirve a los estratos más bajos
- Stratum 3
-
Las lecturas del estrato 2; Sirven a los estratos más bajos
- Stratum n+1
-
Las lecturas de los estratos n; Sirven a los estratos más bajos
- Stratum 15
-
Lecturas del estrato 14; Este es el estrato más bajo.
This process continues down to Stratum 15 which is the lowest valid stratum. The label Stratum 16 is used to indicated an unsynchronized state.
Understanding NTP
The version of NTP
used by Fedora is as described in RFC 1305 Network Time Protocol (Version 3) Specification, Implementation and Analysis and RFC 5905 Network Time Protocol Version 4: Protocol and Algorithms Specification
This implementation of NTP
enables sub-second accuracy to be achieved. Over the Internet, accuracy to 10s of milliseconds is normal. On a Local Area Network (LAN), 1 ms accuracy is possible under ideal conditions. This is because clock drift is now accounted and corrected for, which was not done in earlier, simpler, time protocol systems. A resolution of 233 picoseconds is provided by using 64-bit time stamps. The first 32-bits of the time stamp is used for seconds, the last 32-bits are used for fractions of seconds.
NTP
represents the time as a count of the number of seconds since 00:00 (midnight) 1 January, 1900 GMT. As 32-bits is used to count the seconds, this means the time will "roll over" in 2036. However NTP
works on the difference between time stamps so this does not present the same level of problem as other implementations of time protocols have done. If a hardware clock that is within 68 years of the correct time is available at boot time then NTP
will correctly interpret the current date. The NTP4
specification provides for an "Era Number" and an "Era Offset" which can be used to make software more robust when dealing with time lengths of more than 68 years. Note, please do not confuse this with the Unix Year 2038 problem.
The NTP
protocol provides additional information to improve accuracy. Four time stamps are used to allow the calculation of round-trip time and server response time. In order for a system in its role as NTP
client to synchronize with a reference time server, a packet is sent with an "originate time stamp". When the packet arrives, the time server adds a "receive time stamp". After processing the request for time and date information and just before returning the packet, it adds a "transmit time stamp". When the returning packet arrives at the NTP
client, a "receive time stamp" is generated. The client can now calculate the total round trip time and by subtracting the processing time derive the actual traveling time. By assuming the outgoing and return trips take equal time, the single-trip delay in receiving the NTP
data is calculated. The full NTP
algorithm is much more complex than presented here.
When a packet containing time information is received it is not immediately responded to, but is first subject to validation checks and then processed together with several other time samples to arrive at an estimate of the time. This is then compared to the system clock to determine the time offset, the difference between the system clock’s time and what ntpd
has determined the time should be. The system clock is adjusted slowly, at most at a rate of 0.5ms per second, to reduce this offset by changing the frequency of the counter being used. It will take at least 2000 seconds to adjust the clock by 1 second using this method. This slow change is referred to as slewing and cannot go backwards. If the time offset of the clock is more than 128ms (the default setting), ntpd
can "step" the clock forwards or backwards. If the time offset at system start is greater than 1000 seconds then the user, or an installation script, should make a manual adjustment. See Configuring the Date and Time. With the -g
option to the ntpd command (used by default), any offset at system start will be corrected, but during normal operation only offsets of up to 1000 seconds will be corrected.
Some software may fail or produce an error if the time is changed backwards. For systems that are sensitive to step changes in the time, the threshold can be changed to 600s instead of 128ms using the -x
option (unrelated to the -g
option). Using the -x
option to increase the stepping limit from 0.128s to 600s has a drawback because a different method of controlling the clock has to be used. It disables the kernel clock discipline and may have a negative impact on the clock accuracy. The -x
option can be added to the /etc/sysconfig/ntpd
configuration file.
Understanding the Drift File
The drift file is used to store the frequency offset between the system clock running at its nominal frequency and the frequency required to remain in synchronization with UTC. If present, the value contained in the drift file is read at system start and used to correct the clock source. Use of the drift file reduces the time required to achieve a stable and accurate time. The value is calculated, and the drift file replaced, once per hour by ntpd
. The drift file is replaced, rather than just updated, and for this reason the drift file must be in a directory for which the ntpd
has write permissions.
UTC, Timezones, and DST
As NTP
is entirely in UTC (Universal Time, Coordinated), Timezones and DST (Daylight Saving Time) are applied locally by the system. The file /etc/localtime
is a copy of, or symlink to, a zone information file from /usr/share/zoneinfo
. The RTC may be in localtime or in UTC, as specified by the 3rd line of /etc/adjtime
, which will be one of LOCAL or UTC to indicate how the RTC clock has been set. Users can easily change this setting using the checkbox System Clock Uses UTC
in the Date and Time graphical configuration tool. See Configuring the Date and Time for information on how to use that tool. Running the RTC in UTC is recommended to avoid various problems when daylight saving time is changed.
The operation of ntpd
is explained in more detail in the man page ntpd(8)
. The resources section lists useful sources of information. See Additional Resources.
Authentication Options for NTP
NTPv4
added support for the Autokey Security Architecture, which is based on public asymmetric cryptography while retaining support for symmetric key cryptography. The Autokey Security Architecture is described in RFC 5906 Network Time Protocol Version 4: Autokey Specification. The man page ntp_auth(5)
describes the authentication options and commands for ntpd
.
An attacker on the network can attempt to disrupt a service by sending NTP
packets with incorrect time information. On systems using the public pool of NTP
servers, this risk is mitigated by having more than three NTP
servers in the list of public NTP
servers in /etc/ntp.conf
. If only one time source is compromised or spoofed, ntpd
will ignore that source. You should conduct a risk assessment and consider the impact of incorrect time on your applications and organization. If you have internal time sources you should consider steps to protect the network over which the NTP
packets are distributed. If you conduct a risk assessment and conclude that the risk is acceptable, and the impact to your applications minimal, then you can choose not to use authentication.
The broadcast and multicast modes require authentication by default. If you have decided to trust the network then you can disable authentication by using disable auth directive in the ntp.conf
file. Alternatively, authentication needs to be configured by using SHA1 or MD5 symmetric keys, or by public (asymmetric) key cryptography using the Autokey scheme. The Autokey scheme for asymmetric cryptography is explained in the ntp_auth(8)
man page and the generation of keys is explained in ntp-keygen(8
). To implement symmetric key cryptography, see Configuring Symmetric Authentication Using a Key for an explanation of the key
option.
Managing the Time on Virtual Machines
Virtual machines cannot access a real hardware clock and a virtual clock is not stable enough as the stability is dependent on the host systems work load. For this reason, para-virtualized clocks should be provided by the virtualization application in use (for more information see Libvirt Managed Timers in the Virtualization Administration Guide). On Fedora with KVM the default clock source is kvm-clock
. See the KVM guest timing management chapter of the Virtualization Host Configuration and Guest Installation Guide.
Understanding Leap Seconds
Greenwich Mean Time (GMT) was derived by measuring the solar day, which is dependent on the Earth’s rotation. When atomic clocks were first made, the potential for more accurate definitions of time became possible. In 1958, International Atomic Time (TAI) was introduced based on the more accurate and very stable atomic clocks. A more accurate astronomical time, Universal Time 1 (UT1), was also introduced to replace GMT. The atomic clocks are in fact far more stable than the rotation of the Earth and so the two times began to drift apart. For this reason UTC was introduced as a practical measure. It is kept within one second of UT1 but to avoid making many small trivial adjustments it was decided to introduce the concept of a leap second in order to reconcile the difference in a manageable way. The difference between UT1 and UTC is monitored until they drift apart by more than half a second. Then only is it deemed necessary to introduce a one second adjustment, forward or backward. Due to the erratic nature of the Earth’s rotational speed, the need for an adjustment cannot be predicted far into the future. The decision as to when to make an adjustment is made by the International Earth Rotation and Reference Systems Service (IERS). However, these announcements are important only to administrators of Stratum 1 servers because NTP
transmits information about pending leap seconds and applies them automatically.
Understanding the ntpd Configuration File
The daemon, ntpd
, reads the configuration file at system start or when the service is restarted. The default location for the file is /etc/ntp.conf
and you can view the file by entering the following command:
~]$ less /etc/ntp.conf
The configuration commands are explained briefly later in this chapter, see Configure NTP, and more verbosely in the ntp.conf(5)
man page.
Here follows a brief explanation of the contents of the default configuration file:
- The driftfile entry
-
A path to the drift file is specified, the default entry on Fedora is:
driftfile /var/lib/ntp/drift
If you change this be certain that the directory is writable by ntpd
. The file contains one value used to adjust the system clock frequency after every system or service start. See Understanding the Drift File for more information.
- The access control entries
-
The following line sets the default access control restriction:
restrict default nomodify notrap nopeer noquery
-
The
nomodify
options prevents any changes to the configuration. -
The
notrap
option preventsntpdc
control message protocol traps. -
The
nopeer
option prevents a peer association being formed. -
The
noquery
option preventsntpq
andntpdc
queries, but not time queries, from being answered.
The See CVE-2013-5211 for more details. |
Addresses within the range 127.0.0.0/8
are sometimes required by various processes or applications. As the "restrict default" line above prevents access to everything not explicitly allowed, access to the standard loopback address for IPv4
and IPv6
is permitted by means of the following lines:
# the administrative functions. restrict 127.0.0.1 restrict ::1
Addresses can be added underneath if specifically required by another application.
Hosts on the local network are not permitted because of the "restrict default" line above. To change this, for example to allow hosts from the 192.0.2.0/24
network to query the time and statistics but nothing more, a line in the following format is required:
restrict 192.0.2.0 mask 255.255.255.0 nomodify notrap nopeer
To allow unrestricted access from a specific host, for example 192.0.2.250/32
, a line in the following format is required:
restrict 192.0.2.250
A mask of 255.255.255.255
is applied if none is specified.
The restrict commands are explained in the ntp_acc(5)
man page.
- The public servers entry
-
By default, the
ntp.conf
file contains four public server entries:
server 0.fedora.pool.ntp.org iburst server 1.fedora.pool.ntp.org iburst server 2.fedora.pool.ntp.org iburst server 3.fedora.pool.ntp.org iburst
- The broadcast multicast servers entry
-
By default, the
ntp.conf
file contains some commented out examples. These are largely self explanatory. See Configure NTP for the explanation of the specific commands. If required, add your commands just below the examples.
When the |
Understanding the ntpd Sysconfig File
The file will be read by the ntpd
init script on service start. The default contents is as follows:
# Command line options for ntpd OPTIONS="-g"
The -g
option enables ntpd
to ignore the offset limit of 1000s and attempt to synchronize the time even if the offset is larger than 1000s, but only on system start. Without that option ntpd will exit if the time offset is greater than 1000s. It will also exit after system start if the service is restarted and the offset is greater than 1000s even with the -g
option.
Disabling chrony
In order to use ntpd
the default user space daemon, chronyd
, must be stopped and disabled. Issue the following command as root
:
~]# systemctl stop chronyd
To prevent it restarting at system start, issue the following command as root
:
~]# systemctl disable chronyd
To check the status of chronyd
, issue the following command:
~]$ systemctl status chronyd
Checking if the NTP Daemon is Installed
To check if ntpd
is installed, enter the following command as root
:
~]# dnf install ntp
NTP
is implemented by means of the daemon or service ntpd
, which is contained within the ntp package.
Installing the NTP Daemon (ntpd)
To install ntpd
, enter the following command as root
:
~]# dnf install ntp
To enable ntpd
at system start, enter the following command as root
:
~]# systemctl enable ntpd
Checking the Status of NTP
To check if ntpd
is running and configured to run at system start, issue the following command:
~]$ systemctl status ntpd
To obtain a brief status report from ntpd
, issue the following command:
~]$ ntpstat
unsynchronised
time server re-starting
polling server every 64 s
~]$ ntpstat
synchronised to NTP server (10.5.26.10) at stratum 2
time correct to within 52 ms
polling server every 1024 s
Configure the Firewall to Allow Incoming NTP Packets
The NTP
traffic consists of UDP
packets on port 123
and needs to be permitted through network and host-based firewalls in order for NTP
to function.
Check if the firewall is configured to allow incoming NTP
traffic for clients using the graphical Firewall Configuration tool.
To start the graphical firewall-config tool, press the Super key to enter the Activities Overview, type firewall and then press Enter. The Firewall Configuration
window opens. You will be prompted for your user password.
To start the graphical firewall configuration tool using the command line, enter the following command as root
user:
~]# firewall-config
The Firewall Configuration
window opens. Note, this command can be run as normal user but you will then be prompted for the root
password from time to time.
Look for the word "Connected" in the lower left corner. This indicates that the firewall-config tool is connected to the user space daemon, firewalld
.
Change the Firewall Settings
To immediately change the current firewall settings, ensure the drop-down selection menu labeled Configuration
is set to Runtime
. Alternatively, to edit the settings to be applied at the next system start, or firewall reload, select Permanent
from the drop-down list.
When making changes to the firewall settings in When making changes to the firewall settings in |
Open Ports in the Firewall for NTP Packets
To permit traffic through the firewall to a certain port, start the firewall-config tool and select the network zone whose settings you want to change. Select the Ports
tab and then click the Add button. The Port and Protocol
window opens.
Enter the port number 123
and select udp
from the drop-down list.
Configure ntpdate Servers
The purpose of the ntpdate
service is to set the clock during system boot. This was used previously to ensure that the services started after ntpdate
would have the correct time and not observe a jump in the clock. The use of ntpdate
and the list of step-tickers is considered deprecated and so Fedora uses the -g
option to the ntpd command and not ntpdate
by default.
The ntpdate
service in Fedora is mostly useful only when used alone without ntpd
. With systemd, which starts services in parallel, enabling the ntpdate
service will not ensure that other services started after it will have correct time unless they specify an ordering dependency on time-sync.target
, which is provided by the ntpdate
service. The ntp-wait
service (in the ntp-perl subpackage) provides the time-sync
target for the ntpd
service. In order to ensure a service starts with correct time, add After=time-sync.target
to the service and enable one of the services which provide the target (ntpdate
or sntp, or ntp-wait if ntpd
is enabled). Some services on Fedora have the dependency included by default ( for example, dhcpd
, dhcpd6
, and crond
).
To check if the ntpdate
service is enabled to run at system start, issue the following command:
~]$ systemctl status ntpdate
To enable the service to run at system start, issue the following command as root
:
~]# systemctl enable ntpdate
In Fedora the default /etc/ntp/step-tickers
file contains 0.fedora.pool.ntp.org
. To configure additional ntpdate
servers, using a text editor running as root
, edit /etc/ntp/step-tickers
. The number of servers listed is not very important as ntpdate
will only use this to obtain the date information once when the system is starting. If you have an internal time server then use that host name for the first line. An additional host on the second line as a backup is sensible. The selection of backup servers and whether the second host is internal or external depends on your risk assessment. For example, what is the chance of any problem affecting the first server also affecting the second server? Would connectivity to an external server be more likely to be available than connectivity to internal servers in the event of a network failure disrupting access to the first server?
Configure NTP
To change the default configuration of the NTP
service, use a text editor running as root
user to edit the /etc/ntp.conf
file. This file is installed together with ntpd
and is configured to use time servers from the Fedora pool by default. The man page ntp.conf(5)
describes the command options that can be used in the configuration file apart from the access and rate limiting commands which are explained in the ntp_acc(5)
man page.
Configure Access Control to an NTP Service
To restrict or control access to the NTP
service running on a system, make use of the restrict command in the ntp.conf
file. See the commented out example:
# Hosts on local network are less restricted. #restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
The restrict command takes the following form:
restrict option
where option is one or more of:
-
ignore
— All packets will be ignored, includingntpq
andntpdc
queries. -
kod
— a "Kiss-o'-death" packet is to be sent to reduce unwanted queries. -
limited
— do not respond to time service requests if the packet violates the rate limit default values or those specified by the discard command.ntpq
andntpdc
queries are not affected. For more information on the discard command and the default values, see Configure Rate Limiting Access to an NTP Service. -
lowpriotrap
— traps set by matching hosts to be low priority. -
nomodify
— prevents any changes to the configuration. -
noquery
— preventsntpq
andntpdc
queries, but not time queries, from being answered. -
nopeer
— prevents a peer association being formed. -
noserve
— deny all packets exceptntpq
andntpdc
queries. -
notrap
— preventsntpdc
control message protocol traps. -
notrust
— deny packets that are not cryptographically authenticated. -
ntpport
— modify the match algorithm to only apply the restriction if the source port is the standardNTP
UDP
port123
. -
version
— deny packets that do not match the currentNTP
version.
To configure rate limit access to not respond at all to a query, the respective restrict command has to have the limited
option. If ntpd
should reply with a KoD
packet, the restrict command needs to have both limited
and kod
options.
The ntpq
and ntpdc
queries can be used in amplification attacks (see CVE-2013-5211 for more details), do not remove the noquery
option from the restrict default command on publicly accessible systems.
Configure Rate Limiting Access to an NTP Service
To enable rate limiting access to the NTP
service running on a system, add the limited
option to the restrict command as explained in Configure Access Control to an NTP Service. If you do not want to use the default discard parameters, then also use the discard command as explained here.
The discard command takes the following form:
discardaverage
valueminimum
valuemonitor
value
-
average
— specifies the minimum average packet spacing to be permitted, it accepts an argument in log2 seconds. The default value is 3 (23 equates to 8 seconds). -
minimum
— specifies the minimum packet spacing to be permitted, it accepts an argument in log2 seconds. The default value is 1 (21 equates to 2 seconds). -
monitor
— specifies the discard probability for packets once the permitted rate limits have been exceeded. The default value is 3000 seconds. This option is intended for servers that receive 1000 or more requests per second.
Examples of the discard command are as follows:
discard average 4
discard average 4 minimum 2
Adding a Peer Address
To add the address of a peer, that is to say, the address of a server running an NTP
service of the same stratum, make use of the peer command in the ntp.conf
file.
The peer command takes the following form:
peer address
where address is an IP
unicast address or a DNS
resolvable name. The address must only be that of a system known to be a member of the same stratum. Peers should have at least one time source that is different to each other. Peers are normally systems under the same administrative control.
Adding a Server Address
To add the address of a server, that is to say, the address of a server running an NTP
service of a higher stratum, make use of the server command in the ntp.conf
file.
The server command takes the following form:
server address
where address is an IP
unicast address or a DNS
resolvable name. The address of a remote reference server or local reference clock from which packets are to be received.
Adding a Broadcast or Multicast Server Address
To add a broadcast or multicast address for sending, that is to say, the address to broadcast or multicast NTP
packets to, make use of the broadcast command in the ntp.conf
file.
The broadcast and multicast modes require authentication by default. See Authentication Options for NTP.
The broadcast command takes the following form:
broadcast address
where address is an IP
broadcast or multicast address to which packets are sent.
This command configures a system to act as an NTP
broadcast server. The address used must be a broadcast or a multicast address. Broadcast address implies the IPv4
address 255.255.255.255
. By default, routers do not pass broadcast messages. The multicast address can be an IPv4
Class D address, or an IPv6
address. The IANA has assigned IPv4
multicast address 224.0.1.1
and IPv6
address FF05::101
(site local) to NTP
. Administratively scoped IPv4
multicast addresses can also be used, as described in RFC 2365 Administratively Scoped IP Multicast.
Adding a Manycast Client Address
To add a manycast client address, that is to say, to configure a multicast address to be used for NTP
server discovery, make use of the manycastclient command in the ntp.conf
file.
The manycastclient command takes the following form:
manycastclient address
where address is an IP
multicast address from which packets are to be received. The client will send a request to the address and select the best servers from the responses and ignore other servers. NTP
communication then uses unicast associations, as if the discovered NTP
servers were listed in ntp.conf
.
This command configures a system to act as an NTP
client. Systems can be both client and server at the same time.
Adding a Broadcast Client Address
To add a broadcast client address, that is to say, to configure a broadcast address to be monitored for broadcast NTP
packets, make use of the broadcastclient command in the ntp.conf
file.
The broadcastclient command takes the following form:
broadcastclient
Enables the receiving of broadcast messages. Requires authentication by default. See Authentication Options for NTP.
This command configures a system to act as an NTP
client. Systems can be both client and server at the same time.
Adding a Manycast Server Address
To add a manycast server address, that is to say, to configure an address to allow the clients to discover the server by multicasting NTP
packets, make use of the manycastserver command in the ntp.conf
file.
The manycastserver command takes the following form:
manycastserver address
Enables the sending of multicast messages. Where address is the address to multicast to. This should be used together with authentication to prevent service disruption.
This command configures a system to act as an NTP
server. Systems can be both client and server at the same time.
Adding a Multicast Client Address
To add a multicast client address, that is to say, to configure a multicast address to be monitored for multicast NTP
packets, make use of the multicastclient command in the ntp.conf
file.
The multicastclient command takes the following form:
multicastclient address
Enables the receiving of multicast messages. Where address is the address to subscribe to. This should be used together with authentication to prevent service disruption.
This command configures a system to act as an NTP
client. Systems can be both client and server at the same time.
Configuring the Burst Option
Using the burst option against a public server is considered abuse. Do not use this option with public NTP
servers. Use it only for applications within your own organization.
To increase the average quality of time offset statistics, add the following option to the end of a server command:
burst
At every poll interval, when the server responds, the system will send a burst of up to eight packets instead of the usual one packet. For use with the server command to improve the average quality of the time-offset calculations.
Configuring the iburst Option
To improve the time taken for initial synchronization, add the following option to the end of a server command:
iburst
At every poll interval, send a burst of eight packets instead of one. When the server is not responding, packets are sent 16s apart. When the server responds, packets are sent every 2s. For use with the server command to reduce the time taken for initial synchronization. This is now a default option in the configuration file.
Configuring Symmetric Authentication Using a Key
To configure symmetric authentication using a key, add the following option to the end of a server or peer command:
key number
where number is in the range 1
to 65534
inclusive. This option enables the use of a message authentication code (MAC) in packets. This option is for use with the peer, server, broadcast, and manycastclient commands.
The option can be used in the /etc/ntp.conf
file as follows:
server 192.168.1.1 key 10 broadcast 192.168.1.255 key 20 manycastclient 239.255.254.254 key 30
See also Authentication Options for NTP.
Configuring the Poll Interval
To change the default poll interval, add the following options to the end of a server or peer command:
minpoll value and maxpoll value
Options to change the default poll interval, where the interval in seconds will be calculated by raising 2 to the power of value, in other words, the interval is expressed in log2 seconds. The default minpoll
value is 6, 26 equates to 64s. The default value for maxpoll
is 10, which equates to 1024s. Allowed values are in the range 3 to 17 inclusive, which equates to 8s to 36.4h respectively. These options are for use with the peer or server. Setting a shorter maxpoll
may improve clock accuracy.
Configuring Server Preference
To specify that a particular server should be preferred above others of similar statistical quality, add the following option to the end of a server or peer command:
prefer
Use this server for synchronization in preference to other servers of similar statistical quality. This option is for use with the peer or server commands.
Configuring the Time-to-Live for NTP Packets
To specify that a particular time-to-live (TTL) value should be used in place of the default, add the following option to the end of a server or peer command:
ttl value
Specify the time-to-live value to be used in packets sent by broadcast servers and multicast NTP
servers. Specify the maximum time-to-live value to use for the "expanding ring search" by a manycast client. The default value is 127
.
Configuring the NTP Version to Use
To specify that a particular version of NTP
should be used in place of the default, add the following option to the end of a server or peer command:
version value
Specify the version of NTP
set in created NTP
packets. The value can be in the range 1
to 4
. The default is 4
.
Configuring the Hardware Clock Update
To configure the system clock to update the hardware clock, also known as the real-time clock (RTC), once after executing ntpdate, add the following line to /etc/sysconfig/ntpdate
:
SYNC_HWCLOCK=yes
To update the hardware clock from the system clock, issue the following command as root
:
~]# hwclock --systohc
When the system clock is being synchronized by ntpd
or chronyd
, the kernel will in turn update the RTC every 11 minutes automatically.
Configuring Clock Sources
To list the available clock sources on your system, issue the following commands:
~]$ cd /sys/devices/system/clocksource/clocksource0/ clocksource0]$ cat available_clocksource kvm-clock tsc hpet acpi_pm clocksource0]$ cat current_clocksource kvm-clock
In the above example, the kernel is using kvm-clock. This was selected at boot time as this is a virtual machine.
To override the default clock source, append the clocksource directive to the GRUB_CMDLINE_LINUX line in the /etc/default/grub
file and rebuild the grub.cfg
file. For example:
GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root crashkernel=auto rd.lvm.lv=rhel/swap vconsole.font=latarcyrheb-sun16 vconsole.keymap=us rhgb quiet clocksource=tsc"
The available clock source is architecture dependent.
Rebuild the grub.cfg
file as follows:
-
On BIOS-based machines, issue the following command as
root
:
~]# grub2-mkconfig -o /boot/grub2/grub.cfg
-
On UEFI-based machines, issue the following command as
root
:
~]# grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
Recursos Adicionales
The following sources of information provide additional resources regarding NTP
and ntpd
.
Documentación Instalada
-
ntpd(8)
man page — Describesntpd
in detail, including the command line options. -
ntp.conf(5)
man page — Contains information on how to configure associations with servers and peers. -
ntpq(8)
man page — Describes theNTP
query utility for monitoring and querying anNTP
server. -
ntpdc(8)
man page — Describes thentpd
utility for querying and changing the state ofntpd
. -
ntp_auth(5)
man page — Describes authentication options, commands, and key management forntpd
. -
ntp_keygen(8)
man page — Describes generating public and private keys forntpd
. -
ntp_acc(5)
man page — Describes access control options using the restrict command. -
ntp_mon(5)
man page — Describes monitoring options for the gathering of statistics. -
ntp_clock(5)
man page — Describes commands for configuring reference clocks. -
ntp_misc(5)
man page — Describes miscellaneous options. -
ntp_decode(5)
man page — Lists the status words, event messages and error codes used forntpd
reporting and monitoring. -
ntpstat(8)
man page — Describes a utility for reporting the synchronization state of theNTP
daemon running on the local machine. -
ntptime(8)
man page — Describes a utility for reading and setting kernel time variables. -
tickadj(8)
man page — Describes a utility for reading, and optionally setting, the length of the tick.
Sitios web útiles
- http://doc.ntp.org/
-
The NTP Documentation Archive
- https://www.eecis.udel.edu/~mills/ntp.html
-
Network Time Synchronization Research Project.
- https://www.eecis.udel.edu/~mills/ntp/html/manyopt.html
-
Information on Automatic Server Discovery in
NTPv4
.
Want to help? Learn how to contribute to Fedora Docs ›